Current Computer-Aided Drug Design

Author(s): Nidhi Rani* and Randhir Singh

DOI: 10.2174/1573409915666181219124956

Molecular Modelling Studies of 1,4-Diaryl-2-Mercaptoimidazole Derivatives for Antimicrobial Potency

Page: [409 - 420] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Imidazoles are considered as potent antimicrobial agents. In view of this 2-mercaptoimidazoles were synthesized and evaluated for antimicrobial study.

Methods: Some new 2-mercaptoimidazoles 4a-r were synthesized using substituted aniline and substituted phenacyl bromides in the presence of anhydrous sodium carbonate or potassium carbonate and potassium thiocyanate under solvent-free conditions catalyzed by eco-friendly ptoluene sulfonic acid.

Results: The structure of compounds was evaluated on the basis of Infrared spectroscopy (IR), 1HNMR (proton nuclear magnetic resonance) and mass spectral studies. These novel compounds were screened for in-vitro antibacterial and antifungal potency against Staphyllococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Further, the study was rationalized by molecular modeling studies. All the compounds were subjected to molecular modeling studies for inhibition of enzyme 14α-demethylase.

Conclusions: The compounds were found to be effective in inhibiting the growth of pathogens. The in-silico results depicted that, all the synthesized compounds have minimum binding energy and good affinity towards the active site and thus can be considered as good inhibitors of 14α- demethylase enzyme.

Keywords: Antibacterial, antifungal, 14α-demethylase, mercaptoimidazole, molecular modeling, pathogens.

Graphical Abstract

[1]
Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Imidazoles as potential antifungal agents: A review. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[2]
Rani, N.; Sharma, A.; Singh, R. Imidazoles as promising scaffold for antibacterial activity: A review. Mini Rev. Med. Chem., 2013, 13(11), 1812-1835.
[3]
Wright, S.W.; Harris, R.R.; Collins, R.J.; Corbett, R.L.; Green, A.M.; Wadman, E.A.; and Batt, D.G. Novel 1-(pyridylphenyl)-1-phenyl-2-imidazolylethanols with topical antiinflammatory activity. J. Med. Chem., 1992, 35, 3148-3155.
[4]
Graßmann, S.; Sadek, B.; Ligneau, X.; Elz, S.; Ganellin, C.R.; Arrang, J.M.; Schwartz, J.C.; Stark, H.; Schunack, W. Progress in the proxifan class: Heterocyclic congeners as novel potent and selective histamine H-3 receptor antagonist. Eur. J. Pharm. Sci., 2002, 15, 367-378.
[5]
Jain, R.; Vangapandu, S.; Jain, M.; Kaur, N.; Singh, S.; Singh, P.P. Antimalarial activities of ring-substituted bioimidazoles. Bioorg. Med. Chem. Lett., 2002, 12, 1701.
[6]
Soujanya, Y.; Sastry, G.N. Theoretical elucidation of the antioxidant mechanism of 1,3-dihydro-1-methyl-2H-imidazole-2-selenol (MSeI). Tetrahedron Lett., 2007, 48, 2109-2112.
[7]
Hussain, T.; Siddiqui, H.L.; Rehman, M.Z.; Yasinzai, M.M.; Parvez, M. Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. Eur. J. Med. Chem., 2009, 44, 4654-4660.
[8]
Nguyen, D.N.; Stump, C.A.; Walsh, E.S.; Fernandes, C.; Davide, J.P.; Ellis-Hutchings, M.; Robinson, R.G.; Williams, T.M.; Lobell, R.B.; Huber, H.E.; Buser, C.A. Potent inhibitors of farnesyltransferase and geranylgeranyltransferase-I. Bioorg. Med. Chem. Lett., 2002, 12, 1269-1273.
[9]
Chen, J.; Wang, Z.; Lu, Y.; Dalton, J.T.; Millera, D.D.; Li, W. Synthesis and antiproliferative activity of imidazole and imidazoline analogues for melanoma. Bioorg. Med. Chem. Lett., 2008, 18, 3183-3187.
[10]
Valdez, C.A.; Tripp, J.C.; Miyamoto, Y.; Kalisiak, J.; Hruz, P.; Andersen, Y.S.; Brown, S.E.; Kangas, K.; Arzu, L.V.; Davds, B.J.; Gillin, F.D.; Upcroft, J.A.; Upcroft, P.; Fokin, V.V.; Smith, D.K.; Sharpless, K.B.; Eckmann, L. Synthesis and electrochemistry of 2-ethenyl and 2-Ethanyl derivatives of 5-Nitroimidazole and antimicrobial activity against Giardia lamblia. J. Med. Chem., 2009, 52, 4038.
[11]
Dominianni, S.J.; Yen, T.T. Oral hypoglycemic agents. Discovery and structure-activity relationships of phenacylimidazolium halides. J. Med. Chem., 1989, 32, 2301-2306.
[12]
Basker, S.; Singh, G.; Jacob, R. Clonidine in Paediatrics. Indian J. Anaesth., 2009, 53(3), 270-280.
[13]
Ganjali, M.R.; Norouzi, P.; Faridbod, F.; Pirelahi, H. Novel metronidazole membrane sensor based on a 2,6-(p-N,N-Dimethylaminophenyl)-4-Phenylthiopyrylium Perchlorate. J. Chinese. Chem. Soc., 2007, 54, 55.
[14]
Lefler, E.; Stevens, D.A. Inhibition and killing of Candida albicans in vitro by five imidazoles in clinical use. Antimicrob. Agents Chemother., 1984, 25, 450.
[15]
Bilehjani, E.; Kianfar, A.A.; Toofan, M.; Fakhari, S. Anaesthesia with etomidate and remifentanil for caesarean section in a patient with severe peripartum cardiomyopathy-a case report. Middle East J. Anaesthes., 2008, 19, 1141-1149.
[16]
Allen, J.D.; Ekue, J.M.K.; Shanks, R.G.; Zaidi, S.A. The effect of Kö 1173, a new anticonvulsant agent on experimental cardiac arrhythmias. Br. J. Pharmac., 1972, 45, 561.
[17]
Ersoz, H.O.; Gogas-Yavuz, D.; Ozdogan, O.; Budak, Y.; Akalyn, S. The Effect of Losartan on Plasma Atrial Natriuretic Peptide Levels in the Diabetic Rat Model. Turk. J. Endocrinol. Metab., 1999, 1, 17.
[18]
(a) Gupta, G.K.; Rani, N.; Kumar, V. Microwave assisted synthesis of imidazoles - a review. Mini-Reviews. Org. Chem., 2012, 9, 270.
(b) Rani, N.; Sharma, A.; Singh, R. Trisubstituted imidazole synthesis: A review. Mini Rev. Org. Chem., 2015, 12(1), 34-65.
(c) Rani, N.; Kumar, P.; Singh, R.; Sharma, A. Molecular docking evaluation of imidazole analogues as potent C. albicans 14α-demethylase inhibitors. Curr. Comp. Aided Drug des., 2015, 11(4), 8-20.
[19]
Rani, N. Synthesis, biological evaluation and computational study of some new imidazole derivatives. M. Pharma Dissertation, Maharishi Markandeshwar University, Mullana, June, 2011.
[20]
Rani, N.; Gupta, G.K.; Kumar, V.; Kumar, V. Imidazole: A potential scaffold for antimicrobial activity. Global J. Pharma. Edu. Res., 2012, 1, 7-16.
[21]
(a) Rani, N.; Singh, R. Molecular modeling investigation of some new 2-mercaptoimidazoles. Curr. Comp. Aided Drug Design, 2017, 13(1), 48-56.
(b) Aggarwal, R.; Kumar, R.; Kumar, V. A facile and rapid one-pot synthesis of 1,4-diaryl-2-mercaptoimidazoles under solvent-free conditions. J. Sulfur Chemistry., 2007, 28, 617-623.
[22]
Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli, S.; Herreros, E.; Macchia, B. Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J. Med. Chem., 2002, 45, 4903-4912.
[23]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49, 3315-3321.
[24]
Cupp-Vickery, J.R.; Garcia, C.; Hofacre, A.; McGee-Estrada, K. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J. Mol. Biol., 2011, 311, 101-110.
[25]
Maurice, H.B.; Tuarira, E.; Mwambete, K. Virtual high screening throughput and design of 14α-lanosterol demethylase inhibitors against Mycobacterium tuberculosis. Afr. J. Biotechnol., 2009, 8, 3072-3078.
[26]
Sadashiva, M.P.; Mallesha, H.; Hitesh, N.A.; Rangappaa, K.S. 2004 Synthesis and microbial inhibition study of novel 5-imidazolyl substituted isoxazolidines. Bioorg. Med. Chem., 2004, 12, 6389-6395.
[27]
Ji, H.; Zhang, W.; Zhou, Y.; Zhang, M.; Zhu, J.; Song, Y.; Lu, J.; Zhu, J. A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. J. Med. Chem., 2000, 43, 2493-2505.