The Inhibition of Polysialyltranseferase ST8SiaIV Through Heparin Binding to Polysialyltransferase Domain (PSTD)

Page: [486 - 495] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies.

Objective: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes?

Methods: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4.

Results: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4.

Conclusion: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.

Keywords: NCAM polysialylation, polysialyltransferase (polyST), ST8SiaIV, heparin, inhibitor, polysialyltransferase domain (PSTD), polybasic region (PBR), NMR, CD, and fluorescence spectra.

Graphical Abstract

[1]
Bull, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res., 2014, 74, 3199-3204.
[2]
Varki, A.; Cummings, R.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. Essentials of Glycobiology, 3rd ed; Cold Spring Harbor, New York, 2008.
[3]
Marx, M.; Rivera-Milla, E.; Stummeyer, K.; Gerardy-Schahn, R.; Bastmeyer, M. Divergent evolution of the vertebrate polysialyltransferase Stx and Pst genes revealed by fish-to-mammal comparison. Dev. Biol., 2007, 306, 560-571.
[4]
Varki, N.M.; Varki, A. Diversity in cell surface sialic acid presentations: Implications for biology and disease. Lab. Invest., 2007, 87, 851-857.
[5]
Varki, A. Colloquium paper: Uniquely human evolution of sialic acid genetics and biology. Proc. Natl. Acad. Sci. USA, 2010, 107, 8939-8946.
[6]
Varki, A. Sialic acids in human health and disease. Trends Mol. Med., 2008, 14, 351-360.
[7]
Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol., 2010, 5, 163-176.
[8]
Harvey, H.A.; Swords, W.E.; Apicella, M.A. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic neisseria and haemophilus. J. Autoimmun., 2001, 16, 257-262.
[9]
Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The sweet spot: Defining virus-sialic acid interactions. Nat. Rev. Microbiol., 2014, 12, 739-749.
[10]
Wasik, B.R.; Barnard, K.N.; Parrish, C.R. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol., 2016, 24, 991-1001.
[11]
Zuber, C.; Lackie, P.M.; Catterall, W.A.; Roth, J. Polysialic acid is associated with sodium channels and the neural cell adhesion molecule NCAM in adult rat brain. J. Biol. Chem., 1992, 267, 9965-9971.
[12]
Yabe, U.; Sato, C.; Matsuda, T.; Kitajima, K. Polysialic acid in human milk: CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J. Biol. Chem., 2003, 278, 13875-13880.
[13]
Rey-Gallardo, A.; Escribano, C.; Delgado-Martin, C.; Rodriguez-Fernandez, J.L.; Gerardy-Schahn, R.; Rutishauser, U.; Corbi, A.L.; Vega, M.A. Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21. Glycobiology, 2010, 20, 1139-1146.
[14]
Curreli, S.; Arany, Z.; Gerardy-Schahn, R.; Mann, D.; Stamatos, N.M. Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J. Biol. Chem., 2007, 282, 30346-30356.
[15]
Wang, Z.; Hu, T.; Feng, D.; Chen, G. Expression of synaptic cell adhesion molecule 1 (SynCAM 1) in different brain regions in a rat subarachnoid hemorrhage model. Neurol. Sci., 2013, 34, 1331-1338.
[16]
Fogel, A.I.; Li, Y.; Giza, J.; Wang, Q.; Lam, T.T.; Modis, Y.; Biederer, T. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J. Biol. Chem., 2010, 285, 34864-34874.
[17]
Werneburg, S.; Buettner, F.F.; Muhlenhoff, M.; Hildebrandt, H. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells. Stem Cell Res., 2015, 14, 339-346.
[18]
Rollenhagen, M.; Kuckuck, S.; Ulm, C.; Hartmann, M.; Galuska, S.P.; Geyer, R.; Geyer, H.; Muhlenhoff, M. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J. Biol. Chem., 2012, 287, 35170-35180.
[19]
Galuska, S.P.; Rollenhagen, M.; Kaup, M.; Eggers, K.; Oltmann-Norden, I.; Schiff, M.; Hartmann, M.; Weinhold, B.; Hildebrandt, H.; Geyer, R.; Muhlenhoff, M.; Geyer, H. Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc. Natl. Acad. Sci. USA, 2010, 107, 10250-10255.
[20]
Werneburg, S.; Buettner, F.F.; Erben, L.; Mathews, M.; Neumann, H.; Muhlenhoff, M.; Hildebrandt, H. Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Glia, 2016, 64, 1314-1330.
[21]
Guo, M.; Narsimhan, G. Solubility of globular proteins in polysaccharide solutions. Biotechnol. Prog., 1991, 7, 54-56.
[22]
Muhlenhoff, M.; Eckhardt, M.; Bethe, A.; Frosch, M.; Gerardy-Schahn, R. Autocatalytic polysialylation of polysialyltransferase-1. EMBO J., 1996, 15, 6943-6950.
[23]
Bhide, G.P.; Zapater, J.L.; Colley, K.J. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. J. Biol. Chem., 2018, 293, 701-716.
[24]
He, H.T.; Finne, J.; Goridis, C. Biosynthesis, membrane association, and release of NCAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J. Cell Biol., 1987, 105, 2489-2500.
[25]
Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci., 2004, 5, 195-208.
[26]
Vutskits, L.; Djebbara-Hannas, Z.; Zhang, H.; Paccaud, J.P.; Durbec, P.; Rougon, G.; Muller, D.; Kiss, J.Z. PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur. J. Neurosci., 2001, 13, 1391-1402.
[27]
Kanato, Y.; Kitajima, K.; Sato, C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology, 2008, 18, 1044-1053.
[28]
Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci., 2004, 5, 195-208.
[29]
Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci., 1998, 54, 1330-1349.
[30]
Falconer, R.A.; Errington, R.J.; Shnyder, S.D.; Smith, P.J.; Patterson, L.H. Polysialyltransferase: a new target in metastatic cancer. Curr. Cancer Drug Targets, 2012, 12, 925-939.
[31]
Somplatzki, S.; Muhlenhoff, M.; Kroger, A.; Gerardy-Schahn, R.; Boldicke, T. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnol., 2017, 17, 42-57.
[32]
Horstkorte, R.; Muhlenhoff, M.; Reutter, W.; Nohring, S.; Zimmermann-Kordmann, M.; Gerardy-Schahn, R. Selective inhibition of polysialyltransferase ST8SiaII by unnatural sialic acids. Exp. Cell Res., 2004, 298, 268-274.
[33]
Wolf, S.; Warnecke, S.; Ehrit, J.; Freiberger, F.; Gerardy-Schahn, R.; Meier, C. Chemical synthesis and enzymatic testing of CMP-sialic acid derivatives. ChemBioChem, 2012, 13, 2605-2615.
[34]
Miyazaki, T.; Angata, K.; Seeberger, P.H.; Hindsgaul, O.; Fukuda, M. CMP substitutions preferentially inhibit polysialic acid synthesis. Glycobiology, 2008, 18, 187-194.
[35]
Wang, L.; Liu, Y.; Wu, L.; Sun, X.L. Sialyltransferase inhibition and recent advances. Biochim. Biophys. Acta, 2016, 1864, 143-153.
[36]
Al-Saraireh, Y.M.; Sutherland, M.; Springett, B.R.; Freiberger, F.; Ribeiro Morais, G.; Loadman, P.M.; Errington, R.J.; Smith, P.J.; Fukuda, M.; Gerardy-Schahn, R.; Patterson, L.H.; Shnyder, S.D.; Falconer, R.A. Pharmacological inhibition of polysialyltransferase ST8SiaII modulates tumour cell migration. PLoS One, 2013, 8e73366
[37]
Nakata, D.; Zhang, L.; Troy, F.A., II Molecular basis for polysialylation: A novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the alpha 2,8-polysialyltransferases is essential for polysialylation. Glycoconj. J., 2006, 23, 423-436.
[38]
Guerrini, M.; Agulles, T.; Bisio, A.; Hricovini, M.; Lay, L.; Naggi, A.; Poletti, L.; Sturiale, L.; Torri, G.; Casu, B. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun., 2002, 292, 222-230.
[39]
Bisio, A.; Urso, E.; Guerrini, M.; de Wit, P.; Torri, G.; Naggi, A. Structural characterization of the low-molecular-weight heparin dalteparin by combining different analytical strategies. Molecules, 2017, 22e1051
[40]
Bisio, A.; Mantegazza, A.; Vecchietti, D.; Bensi, D.; Coppa, A.; Torri, G.; Bertini, S. Determination of the molecular weight of low-molecular-weight heparins by using high-pressure size exclusion chromatography on line with a triple detector array and conventional methods. Molecules, 2015, 20, 5085-5098.
[41]
Atha, D.H.; Gaigalas, A.K.; Reipa, V. Structural analysis of heparin by raman spectroscopy. J. Pharm. Sci., 1996, 85, 52-56.
[42]
Joseph, P.R.; Mosier, P.D.; Desai, U.R.; Rajarathnam, K. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: Structural plasticity mediates differential binding interactions. Biochem. J., 2015, 472, 121-134.
[43]
Bjork, I.; Lindahl, U. Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem., 1982, 48, 161-182.
[44]
McNeely, T.B.; Griffith, M.J. The anticoagulant mechanism of action of heparin in contact-activated plasma: Inhibition of factor X activation. Blood, 1985, 65, 1226-1231.
[45]
Verstraete, M. Heparin in the prevention and treatment of arterial thromboembolism. Adv. Exp. Med. Biol., 1992, 313, 249-258.
[46]
Hirsh, J. Low-molecular-weight heparin: A review of the results of recent studies of the treatment of venous thromboembolism and unstable angina. Circulation, 1998, 98, 1575-1582.
[47]
Takahashi, K.; Imai, A.; Iijima, M.; Yoshimoto, N.; Maturana, A.D.; Kuroda, S.; Niimi, T. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis. FEBS Lett., 2015, 589, 4026-4032.
[48]
Franchini, M.; Mannucci, P.M. Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Ann. Med., 2015, 47, 116-121.
[49]
Bae, J.; Desai, U.R.; Pervin, A.; Caldwell, E.E.; Weiler, J.M.; Linhardt, R.J. Interaction of heparin with synthetic antithrombin III peptide analogues. Biochem. J., 1994, 301, 121-129.
[50]
Mach, H.; Volkin, D.B.; Burke, C.J.; Middaugh, C.R.; Linhardt, R.J.; Fromm, J.R.; Loganathan, D.; Mattsson, L. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry, 1993, 32, 5480-5489.
[51]
Smiley, S.L.; Henry, D.O.; Wong, M.K. The mechanism of Low Molecular Weight Heparin (LMWH) inhibition of tumor growth. J. Clin. Oncol., 2006, 18, 13093.
[52]
Hirsh, J.; Siragusa, S.; Cosmi, B.; Ginsberg, J.S. Low Molecular Weight Heparins (LMWH) in the treatment of patients with acute venous thromboembolism. Thromb. Haemost., 1995, 74, 360-363.
[53]
Kakkar, V.V. Effectiveness and safety of Low Molecular Weight Heparins (LMWH) in the prevention of Venous Thromboembolism (VTE). Thromb. Haemost., 1995, 74, 364-368.
[54]
Ozaslan, E.; Ozkan, M.; Cicin, I.; Benekli, M.; Kocer, M.; Uysal, M.; Oksuzoglu, B.; Isikdogan, A.; Cubukcu, E.; Elkiran, E.T.; Dane, F.; Aliustaoglu, M.; Sevinc, A.; Karaoglu, A.; Ulas, A.; Gokoz-Dogu, G. Effectiveness and safety of LMWH treatment in patients with cancer diagnosed with non high-risk venous thromboembolism: Turkish observational study (TREBECA). Clin. Appl. Thromb. Hemost., 2018, 24, 973-979.
[55]
Bonarelli, S.; Bacchin, M.R.; Frugiuele, I.; Feoli, M.A.; Facchini, F.; Altimari, V. Dabigatran etexilate and LMWH for the prevention of venous thromboembolism in 532 patients undergoing hip surgery. Eur. Rev. Med. Pharmacol. Sci., 2015, 19, 897-903.
[56]
Borsig, L. Heparin as an inhibitor of cancer progression. Prog. Mol. Biol. Transl. Sci., 2010, 93, 335-349.
[57]
Chen, Y.; Scully, M.; Dawson, G.; Goodwin, C.; Xia, M.; Lu, X.; Kakkar, A. Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling. Thromb. Haemost., 2013, 109, 1148-1157.
[58]
Volkers, G.; Worrall, L.J.; Kwan, D.H.; Yu, C.C.; Baumann, L.; Lameignere, E.; Wasney, G.A.; Scott, N.E.; Wakarchuk, W.; Foster, L.J.; Withers, S.G.; Strynadka, N.C. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat. Struct. Mol. Biol., 2015, 22, 627-635.
[59]
Bhide, G.P.; Prehna, G.; Ramirez, B.E.; Colley, K.J. The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry, 2017, 56, 1504-1517.
[60]
Foley, D.A.; Swartzentruber, K.G.; Colley, K.J. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J. Biol. Chem., 2009, 284, 15505-15516.
[61]
Clore, G.M.; Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol., 1994, 239, 349-363.
[62]
Kang, J.; Low, W.; Norberg, T.; Meisenhelder, J.; Hansson, K.; Stenflo, J.; Zhou, G.P.; Imperial, J.; Olivera, B.M.; Rigby, A.C.; Craig, A.G. Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is α-D-Gal-(1→3)-α-D-GalNAc. Eur. J. Biochem., 2004, 271, 4939-4949.
[63]
Schnell, J.R.; Zhou, G-P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: Application to cGMP-dependent protein kinase Iα. Protein Sci., 2005, 14, 2421-2428.
[64]
Zhou, G-P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The three-dimensional structure of the GMP-dependent protein kinase I - α leucine zipper domain and its interaction with the myosin binding subunit. Blood, 2004, 104, 3539-3539.
[65]
Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley Interscience: New York, 1986.
[66]
Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR, 1995, 6, 277-293.
[67]
Vranken, W.F.; Boucher, W.; Stevens, T.J.; Fogh, R.H.; Pajon, A.; Llinas, M.; Ulrich, E.L.; Markley, J.L.; Ionides, J.; Laue, E.D. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins, 2005, 59, 687-696.
[68]
Zhou, G.P.; Troy, F.A., II NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15, 347-359.
[69]
Zhou, G.P.; Troy, F.A., II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6, 399-411.
[70]
Zhou, G.P.; Troy, F.A., II Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Glycobiology, 2003, 13, 51-71.
[71]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrPc to PrPsc. Curr. Top. Med. Chem., 2013, 13, 1152-1163.
[72]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying helix-helix interactions in proteins by incorporating the wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16, 581-590.
[73]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Ialpha and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18, 966-978.
[74]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284, 142-148.
[75]
Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc., 2007, 2, 2728-2733.
[76]
Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T.E.; Nilges, M. ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics, 2007, 23, 381-382.
[77]
Cheung, M.S.; Maguire, M.L.; Stevens, T.J.; Broadhurst, R.W. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J. Magn. Reson., 2010, 202, 223-233.
[78]
Sreerama, N.; Woody, R. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2001, 287, 252-260.
[79]
Chen, F.F.; Lin, W.H.; Lin, S.C.; Kuo, J.H.; Chu, H.Y.; Huang, W.C.; Chuang, Y.J.; Lee, S.C.; Sue, S.C. Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology, 2012, 22, 649-661.
[80]
Fromm, J.R.; Hileman, R.E.; Caldwell, E.E.; Weiler, J.M.; Linhardt, R.J. Pattern and spacing of basic amino acids in heparin binding sites. Arch. Biochem. Biophys., 1997, 343, 92-100.
[81]
Faham, S.; Hileman, R.E.; Fromm, J.R.; Linhardt, R.J.; Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science, 1996, 271, 1116-1120.
[82]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283, 32860-32869.
[83]
Kajimura, N.; Yamazaki, M.; Morikawa, K.; Yamazaki, A.; Mayanagi, K. Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J. Struct. Biol., 2002, 139, 27-38.
[84]
Zhou, G.P. Editorial: Current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11, 216-217.
[85]
Zhou, G.P. Predictions and determinations of protein and peptide structures. Protein Pept. Lett., 2011, 18, 964-965.
[86]
Zhou, G.P.; Zhong, W.Z. Perspectives in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16, 381-382.
[87]
Zhou, G.P. Editorial: Impacts of computational biology to medicinal chemistry. Med. Chem., 2017, 13, 504-505.
[88]
Zhou, G.P. Editorial: Modulations and their biological functions of protein-biomolecule interactions. Curr. Top. Med. Chem., 2016, 16, 579-580.
[89]
Bjorndahl, T.C.; Zhou, G.P.; Liu, X.; Perez-Pineiro, R.; Semenchenko, V.; Saleem, F.; Acharya, S.; Bujold, A.; Sobsey, C.A.; Wishart, D.S. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(beta) conversion process. Biochemistry, 2011, 50, 1162-1173.
[90]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17, 2359-2369.
[91]
Zhou, G.P.; Huang, R.B.; Troy, F.A., II 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22, 137-148.
[92]
Zhou, G.P. The interaction between polysialic acid and polysialyltransferase domain (PSTD) in ST8Sia IV and the cooperative effect of the PSTD and the Polybasic Region (PBR). Curr. Med. Chem., 2018. in press
[93]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[94]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[95]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[96]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[97]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[98]
Chen, J.; Long, R.; Wang, X.L.; Liu, B.; Chou, K.C. dRHP-PseRA: Detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Sci. Rep., 2016, 6, 32333.
[99]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.
[100]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[101]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J. Biomol. Struct. Dyn., 2016, 34, 1946-1961.
[102]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[103]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[104]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21E95
[105]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.
[106]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chou, K.C. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn., 2016, 34, 223-235.
[107]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.
[108]
Liu, B.; Long, R.; Chou, K.C. iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32, 2411-2418.
[109]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[110]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[111]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: Identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.
[112]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.
[113]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: Identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7, 69783-69793.
[114]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: Identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.
[115]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[116]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[117]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[118]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33, 341-346.
[119]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.
[120]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[121]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: A two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34, 33-40.
[122]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.
[123]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: Predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[124]
Xuao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_balmGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics,, 2018, pii: S0888-7543. (18) 30260-X.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017]
[125]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14, 883-891.
[126]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[127]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.