[1]
Bull, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res., 2014, 74, 3199-3204.
[2]
Varki, A.; Cummings, R.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. Essentials of Glycobiology, 3rd ed; Cold Spring Harbor, New York, 2008.
[3]
Marx, M.; Rivera-Milla, E.; Stummeyer, K.; Gerardy-Schahn, R.; Bastmeyer, M. Divergent evolution of the vertebrate polysialyltransferase Stx and Pst genes revealed by fish-to-mammal comparison. Dev. Biol., 2007, 306, 560-571.
[4]
Varki, N.M.; Varki, A. Diversity in cell surface sialic acid presentations: Implications for biology and disease. Lab. Invest., 2007, 87, 851-857.
[5]
Varki, A. Colloquium paper: Uniquely human evolution of sialic acid genetics and biology. Proc. Natl. Acad. Sci. USA, 2010, 107, 8939-8946.
[6]
Varki, A. Sialic acids in human health and disease. Trends Mol. Med., 2008, 14, 351-360.
[7]
Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol., 2010, 5, 163-176.
[8]
Harvey, H.A.; Swords, W.E.; Apicella, M.A. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic neisseria and haemophilus. J. Autoimmun., 2001, 16, 257-262.
[9]
Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The sweet spot: Defining virus-sialic acid interactions. Nat. Rev. Microbiol., 2014, 12, 739-749.
[10]
Wasik, B.R.; Barnard, K.N.; Parrish, C.R. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol., 2016, 24, 991-1001.
[11]
Zuber, C.; Lackie, P.M.; Catterall, W.A.; Roth, J. Polysialic acid is associated with sodium channels and the neural cell adhesion molecule NCAM in adult rat brain. J. Biol. Chem., 1992, 267, 9965-9971.
[12]
Yabe, U.; Sato, C.; Matsuda, T.; Kitajima, K. Polysialic acid in human milk: CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J. Biol. Chem., 2003, 278, 13875-13880.
[13]
Rey-Gallardo, A.; Escribano, C.; Delgado-Martin, C.; Rodriguez-Fernandez, J.L.; Gerardy-Schahn, R.; Rutishauser, U.; Corbi, A.L.; Vega, M.A. Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21. Glycobiology, 2010, 20, 1139-1146.
[14]
Curreli, S.; Arany, Z.; Gerardy-Schahn, R.; Mann, D.; Stamatos, N.M. Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J. Biol. Chem., 2007, 282, 30346-30356.
[15]
Wang, Z.; Hu, T.; Feng, D.; Chen, G. Expression of synaptic cell adhesion molecule 1 (SynCAM 1) in different brain regions in a rat subarachnoid hemorrhage model. Neurol. Sci., 2013, 34, 1331-1338.
[16]
Fogel, A.I.; Li, Y.; Giza, J.; Wang, Q.; Lam, T.T.; Modis, Y.; Biederer, T. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J. Biol. Chem., 2010, 285, 34864-34874.
[17]
Werneburg, S.; Buettner, F.F.; Muhlenhoff, M.; Hildebrandt, H. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells. Stem Cell Res., 2015, 14, 339-346.
[18]
Rollenhagen, M.; Kuckuck, S.; Ulm, C.; Hartmann, M.; Galuska, S.P.; Geyer, R.; Geyer, H.; Muhlenhoff, M. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J. Biol. Chem., 2012, 287, 35170-35180.
[19]
Galuska, S.P.; Rollenhagen, M.; Kaup, M.; Eggers, K.; Oltmann-Norden, I.; Schiff, M.; Hartmann, M.; Weinhold, B.; Hildebrandt, H.; Geyer, R.; Muhlenhoff, M.; Geyer, H. Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc. Natl. Acad. Sci. USA, 2010, 107, 10250-10255.
[20]
Werneburg, S.; Buettner, F.F.; Erben, L.; Mathews, M.; Neumann, H.; Muhlenhoff, M.; Hildebrandt, H. Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Glia, 2016, 64, 1314-1330.
[21]
Guo, M.; Narsimhan, G. Solubility of globular proteins in polysaccharide solutions. Biotechnol. Prog., 1991, 7, 54-56.
[22]
Muhlenhoff, M.; Eckhardt, M.; Bethe, A.; Frosch, M.; Gerardy-Schahn, R. Autocatalytic polysialylation of polysialyltransferase-1. EMBO J., 1996, 15, 6943-6950.
[23]
Bhide, G.P.; Zapater, J.L.; Colley, K.J. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. J. Biol. Chem., 2018, 293, 701-716.
[24]
He, H.T.; Finne, J.; Goridis, C. Biosynthesis, membrane association, and release of NCAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J. Cell Biol., 1987, 105, 2489-2500.
[25]
Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci., 2004, 5, 195-208.
[26]
Vutskits, L.; Djebbara-Hannas, Z.; Zhang, H.; Paccaud, J.P.; Durbec, P.; Rougon, G.; Muller, D.; Kiss, J.Z. PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur. J. Neurosci., 2001, 13, 1391-1402.
[27]
Kanato, Y.; Kitajima, K.; Sato, C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology, 2008, 18, 1044-1053.
[28]
Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci., 2004, 5, 195-208.
[29]
Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci., 1998, 54, 1330-1349.
[30]
Falconer, R.A.; Errington, R.J.; Shnyder, S.D.; Smith, P.J.; Patterson, L.H. Polysialyltransferase: a new target in metastatic cancer. Curr. Cancer Drug Targets, 2012, 12, 925-939.
[31]
Somplatzki, S.; Muhlenhoff, M.; Kroger, A.; Gerardy-Schahn, R.; Boldicke, T. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnol., 2017, 17, 42-57.
[32]
Horstkorte, R.; Muhlenhoff, M.; Reutter, W.; Nohring, S.; Zimmermann-Kordmann, M.; Gerardy-Schahn, R. Selective inhibition of polysialyltransferase ST8SiaII by unnatural sialic acids. Exp. Cell Res., 2004, 298, 268-274.
[33]
Wolf, S.; Warnecke, S.; Ehrit, J.; Freiberger, F.; Gerardy-Schahn, R.; Meier, C. Chemical synthesis and enzymatic testing of CMP-sialic acid derivatives. ChemBioChem, 2012, 13, 2605-2615.
[34]
Miyazaki, T.; Angata, K.; Seeberger, P.H.; Hindsgaul, O.; Fukuda, M. CMP substitutions preferentially inhibit polysialic acid synthesis. Glycobiology, 2008, 18, 187-194.
[35]
Wang, L.; Liu, Y.; Wu, L.; Sun, X.L. Sialyltransferase inhibition and recent advances. Biochim. Biophys. Acta, 2016, 1864, 143-153.
[36]
Al-Saraireh, Y.M.; Sutherland, M.; Springett, B.R.; Freiberger, F.; Ribeiro Morais, G.; Loadman, P.M.; Errington, R.J.; Smith, P.J.; Fukuda, M.; Gerardy-Schahn, R.; Patterson, L.H.; Shnyder, S.D.; Falconer, R.A. Pharmacological inhibition of polysialyltransferase ST8SiaII modulates tumour cell migration. PLoS One, 2013, 8e73366
[37]
Nakata, D.; Zhang, L.; Troy, F.A., II Molecular basis for polysialylation: A novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the alpha 2,8-polysialyltransferases is essential for polysialylation. Glycoconj. J., 2006, 23, 423-436.
[38]
Guerrini, M.; Agulles, T.; Bisio, A.; Hricovini, M.; Lay, L.; Naggi, A.; Poletti, L.; Sturiale, L.; Torri, G.; Casu, B. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun., 2002, 292, 222-230.
[39]
Bisio, A.; Urso, E.; Guerrini, M.; de Wit, P.; Torri, G.; Naggi, A. Structural characterization of the low-molecular-weight heparin dalteparin by combining different analytical strategies. Molecules, 2017, 22e1051
[40]
Bisio, A.; Mantegazza, A.; Vecchietti, D.; Bensi, D.; Coppa, A.; Torri, G.; Bertini, S. Determination of the molecular weight of low-molecular-weight heparins by using high-pressure size exclusion chromatography on line with a triple detector array and conventional methods. Molecules, 2015, 20, 5085-5098.
[41]
Atha, D.H.; Gaigalas, A.K.; Reipa, V. Structural analysis of heparin by raman spectroscopy. J. Pharm. Sci., 1996, 85, 52-56.
[42]
Joseph, P.R.; Mosier, P.D.; Desai, U.R.; Rajarathnam, K. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: Structural plasticity mediates differential binding interactions. Biochem. J., 2015, 472, 121-134.
[43]
Bjork, I.; Lindahl, U. Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem., 1982, 48, 161-182.
[44]
McNeely, T.B.; Griffith, M.J. The anticoagulant mechanism of action of heparin in contact-activated plasma: Inhibition of factor X activation. Blood, 1985, 65, 1226-1231.
[45]
Verstraete, M. Heparin in the prevention and treatment of arterial thromboembolism. Adv. Exp. Med. Biol., 1992, 313, 249-258.
[46]
Hirsh, J. Low-molecular-weight heparin: A review of the results of recent studies of the treatment of venous thromboembolism and unstable angina. Circulation, 1998, 98, 1575-1582.
[47]
Takahashi, K.; Imai, A.; Iijima, M.; Yoshimoto, N.; Maturana, A.D.; Kuroda, S.; Niimi, T. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis. FEBS Lett., 2015, 589, 4026-4032.
[48]
Franchini, M.; Mannucci, P.M. Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Ann. Med., 2015, 47, 116-121.
[49]
Bae, J.; Desai, U.R.; Pervin, A.; Caldwell, E.E.; Weiler, J.M.; Linhardt, R.J. Interaction of heparin with synthetic antithrombin III peptide analogues. Biochem. J., 1994, 301, 121-129.
[50]
Mach, H.; Volkin, D.B.; Burke, C.J.; Middaugh, C.R.; Linhardt, R.J.; Fromm, J.R.; Loganathan, D.; Mattsson, L. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry, 1993, 32, 5480-5489.
[51]
Smiley, S.L.; Henry, D.O.; Wong, M.K. The mechanism of Low Molecular Weight Heparin (LMWH) inhibition of tumor growth. J. Clin. Oncol., 2006, 18, 13093.
[52]
Hirsh, J.; Siragusa, S.; Cosmi, B.; Ginsberg, J.S. Low Molecular Weight Heparins (LMWH) in the treatment of patients with acute venous thromboembolism. Thromb. Haemost., 1995, 74, 360-363.
[53]
Kakkar, V.V. Effectiveness and safety of Low Molecular Weight Heparins (LMWH) in the prevention of Venous Thromboembolism (VTE). Thromb. Haemost., 1995, 74, 364-368.
[54]
Ozaslan, E.; Ozkan, M.; Cicin, I.; Benekli, M.; Kocer, M.; Uysal, M.; Oksuzoglu, B.; Isikdogan, A.; Cubukcu, E.; Elkiran, E.T.; Dane, F.; Aliustaoglu, M.; Sevinc, A.; Karaoglu, A.; Ulas, A.; Gokoz-Dogu, G. Effectiveness and safety of LMWH treatment in patients with cancer diagnosed with non high-risk venous thromboembolism: Turkish observational study (TREBECA). Clin. Appl. Thromb. Hemost., 2018, 24, 973-979.
[55]
Bonarelli, S.; Bacchin, M.R.; Frugiuele, I.; Feoli, M.A.; Facchini, F.; Altimari, V. Dabigatran etexilate and LMWH for the prevention of venous thromboembolism in 532 patients undergoing hip surgery. Eur. Rev. Med. Pharmacol. Sci., 2015, 19, 897-903.
[56]
Borsig, L. Heparin as an inhibitor of cancer progression. Prog. Mol. Biol. Transl. Sci., 2010, 93, 335-349.
[57]
Chen, Y.; Scully, M.; Dawson, G.; Goodwin, C.; Xia, M.; Lu, X.; Kakkar, A. Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling. Thromb. Haemost., 2013, 109, 1148-1157.
[58]
Volkers, G.; Worrall, L.J.; Kwan, D.H.; Yu, C.C.; Baumann, L.; Lameignere, E.; Wasney, G.A.; Scott, N.E.; Wakarchuk, W.; Foster, L.J.; Withers, S.G.; Strynadka, N.C. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat. Struct. Mol. Biol., 2015, 22, 627-635.
[59]
Bhide, G.P.; Prehna, G.; Ramirez, B.E.; Colley, K.J. The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry, 2017, 56, 1504-1517.
[60]
Foley, D.A.; Swartzentruber, K.G.; Colley, K.J. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J. Biol. Chem., 2009, 284, 15505-15516.
[61]
Clore, G.M.; Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol., 1994, 239, 349-363.
[62]
Kang, J.; Low, W.; Norberg, T.; Meisenhelder, J.; Hansson, K.; Stenflo, J.; Zhou, G.P.; Imperial, J.; Olivera, B.M.; Rigby, A.C.; Craig, A.G. Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is α-D-Gal-(1→3)-α-D-GalNAc. Eur. J. Biochem., 2004, 271, 4939-4949.
[63]
Schnell, J.R.; Zhou, G-P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: Application to cGMP-dependent protein kinase Iα. Protein Sci., 2005, 14, 2421-2428.
[64]
Zhou, G-P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The three-dimensional structure of the GMP-dependent protein kinase I - α leucine zipper domain and its interaction with the myosin binding subunit. Blood, 2004, 104, 3539-3539.
[65]
Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley Interscience: New York, 1986.
[66]
Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR, 1995, 6, 277-293.
[67]
Vranken, W.F.; Boucher, W.; Stevens, T.J.; Fogh, R.H.; Pajon, A.; Llinas, M.; Ulrich, E.L.; Markley, J.L.; Ionides, J.; Laue, E.D. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins, 2005, 59, 687-696.
[68]
Zhou, G.P.; Troy, F.A., II NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15, 347-359.
[69]
Zhou, G.P.; Troy, F.A., II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6, 399-411.
[70]
Zhou, G.P.; Troy, F.A., II Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Glycobiology, 2003, 13, 51-71.
[71]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrPc to PrPsc. Curr. Top. Med. Chem., 2013, 13, 1152-1163.
[72]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying helix-helix interactions in proteins by incorporating the wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16, 581-590.
[73]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Ialpha and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18, 966-978.
[74]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284, 142-148.
[75]
Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc., 2007, 2, 2728-2733.
[76]
Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T.E.; Nilges, M. ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics, 2007, 23, 381-382.
[77]
Cheung, M.S.; Maguire, M.L.; Stevens, T.J.; Broadhurst, R.W. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J. Magn. Reson., 2010, 202, 223-233.
[78]
Sreerama, N.; Woody, R. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2001, 287, 252-260.
[79]
Chen, F.F.; Lin, W.H.; Lin, S.C.; Kuo, J.H.; Chu, H.Y.; Huang, W.C.; Chuang, Y.J.; Lee, S.C.; Sue, S.C. Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology, 2012, 22, 649-661.
[80]
Fromm, J.R.; Hileman, R.E.; Caldwell, E.E.; Weiler, J.M.; Linhardt, R.J. Pattern and spacing of basic amino acids in heparin binding sites. Arch. Biochem. Biophys., 1997, 343, 92-100.
[81]
Faham, S.; Hileman, R.E.; Fromm, J.R.; Linhardt, R.J.; Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science, 1996, 271, 1116-1120.
[82]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283, 32860-32869.
[83]
Kajimura, N.; Yamazaki, M.; Morikawa, K.; Yamazaki, A.; Mayanagi, K. Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J. Struct. Biol., 2002, 139, 27-38.
[84]
Zhou, G.P. Editorial: Current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11, 216-217.
[85]
Zhou, G.P. Predictions and determinations of protein and peptide structures. Protein Pept. Lett., 2011, 18, 964-965.
[86]
Zhou, G.P.; Zhong, W.Z. Perspectives in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16, 381-382.
[87]
Zhou, G.P. Editorial: Impacts of computational biology to medicinal chemistry. Med. Chem., 2017, 13, 504-505.
[88]
Zhou, G.P. Editorial: Modulations and their biological functions of protein-biomolecule interactions. Curr. Top. Med. Chem., 2016, 16, 579-580.
[89]
Bjorndahl, T.C.; Zhou, G.P.; Liu, X.; Perez-Pineiro, R.; Semenchenko, V.; Saleem, F.; Acharya, S.; Bujold, A.; Sobsey, C.A.; Wishart, D.S. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(beta) conversion process. Biochemistry, 2011, 50, 1162-1173.
[90]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17, 2359-2369.
[91]
Zhou, G.P.; Huang, R.B.; Troy, F.A., II 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22, 137-148.
[92]
Zhou, G.P. The interaction between polysialic acid and polysialyltransferase domain (PSTD) in ST8Sia IV and the cooperative effect of the PSTD and the Polybasic Region (PBR). Curr. Med. Chem., 2018. in press
[93]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[94]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[95]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[96]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[97]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[98]
Chen, J.; Long, R.; Wang, X.L.; Liu, B.; Chou, K.C. dRHP-PseRA: Detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Sci. Rep., 2016, 6, 32333.
[99]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.
[100]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[101]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J. Biomol. Struct. Dyn., 2016, 34, 1946-1961.
[102]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[103]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[104]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21E95
[105]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.
[106]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chou, K.C. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn., 2016, 34, 223-235.
[107]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.
[108]
Liu, B.; Long, R.; Chou, K.C. iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32, 2411-2418.
[109]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[110]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[111]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: Identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.
[112]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.
[113]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: Identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7, 69783-69793.
[114]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: Identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.
[115]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[116]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[117]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[118]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33, 341-346.
[119]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.
[120]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[121]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: A two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34, 33-40.
[122]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.
[123]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: Predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[125]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14, 883-891.
[126]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[127]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.