Evaluation of Cytotoxic Potentials of Some Isoindole-1, 3-Dione Derivatives on HeLa, C6 and A549 Cancer Cell Lines

Page: [69 - 77] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Norcantharimides are known as norcantharidine derivatives and contain an isoindole skeleton structure. Isoindole derivatives have positive effect on inflammatory pathologies including cancers.

Objective: Considering this information, firstly, isoindole derivatives containing different functional groups 4-13 have been synthesized from 2-alkyl/aryl-3a, 4,7,7a-tetrahydro-1H-isoindole-1, 3(2H)-dione.

Methods: For the synthesis of all compounds, 2-alkyl/aryl-3a, 4,7,7a-tetrahydro-1H-isoindole- 1,3(2H)-dione was used as the starting compound. The syntheses were based on two main reactions: Ene-reaction of singlet oxygen and epoxidation. Secondly, their anticancer activities were evaluated against HeLa, C6 and A549 cancer cell lines by the BrdU assay.

Results: Anticancer activities of synthesized compounds (4-13) and 5-FU (5-Florouracil) against HeLa, C6 and A549 cells were investigated at four concentrations (100, 50, 25 and 5 μM). IC50 values of compounds 4-13 were calculated for all cancer cell lines. The investigated compounds showed anticancer activity against the cancer cell lines depending on doses. Compound 7 containing azide and silyl ether exhibited higher inhibitory activity than the other compounds and 5-FU against A549 cancer cell lines (IC50 =19.41± 0.01 μM). Compounds 9 and 11 were determined to exhibit cell-selective activity against HeLa cancer cell lines. Compound 11 had higher activity than the positive control at 100 μM concentrations against C6 cancer cell lines.

Conclusion: According to the results observed, isoindole derivatives 7, 9, and 11 might be good potential anticancer agents for the treatment of cervical and glioma cancer due to their antiproliferative properties, having less cytotoxic effects on healthy cells. In addition, compound 7 could be used in in vivo studies of all three-cancer cell lines (C6, HeLa, and A549).

Keywords: Isoindoline-1, 3-dione, norcantharimide, anticancer activity, heLa cells, C6 cells, 5-fluorouracil, A549 cells.

Graphical Abstract

[1]
Pen-Yuan, L.; Sheng-Jie, S.; Hsien-Liang, S.; Hsue-Fen, C.; Chiung-Chang, L.; Pong-Chun, L.; Leng-Fang, W. A Simple procedure for preparation of n-thiazolyl and n-thiadiazolylcantharidinimides and evaluation of their cytotoxicities against human hepatocellular carcinoma cells. Bioorg. Chem., 2000, 28(5), 266-272.
[http://dx.doi.org/10.1006/bioo.2000.1178] [PMID: 11133145]
[2]
McCluskey, A.; Walkom, C.; Bowyer, M.C.; Ackland, S.P.; Gardiner, E.; Sakoff, J.A. Cantharimides: a new class of modified cantharidin analogues inhibiting protein phosphatases 1 and 2A. Bioorg. Med. Chem. Lett., 2001, 11(22), 2941-2946.
[http://dx.doi.org/10.1016/S0960-894X(01)00594-7] [PMID: 11677131]
[3]
Lin, L.H.; Huang, H.S.; Lin, C.C.; Lee, L.W.; Lin, P.Y. Effects of cantharidinimides on human carcinoma cells. Chem. Pharm. Bull. (Tokyo), 2004, 52(7), 855-857.
[http://dx.doi.org/10.1248/cpb.52.855] [PMID: 15256708]
[4]
Hill, T.A.; Stewart, S.G.; Ackland, S.P.; Gilbert, J.; Sauer, B.; Sakoff, J.A.; McCluskey, A. Norcantharimides, synthesis and anticancer activity: Synthesis of new norcantharidin analogues and their anticancer evaluation. Bioorg. Med. Chem., 2007, 15(18), 6126-6134.
[http://dx.doi.org/10.1016/j.bmc.2007.06.034] [PMID: 17606377]
[5]
Kok, S.H.L.; Chui, C.H.; Lam, W.S.; Chen, J.; Lau, F.Y.; Wong, R.S.M.; Cheng, G.Y.M.; Lai, P.B.S.; Leung, T.W.T.; Yu, M.W.Y.; Tang, J.C.O.; Chan, A.S.C. Synthesis and structure evaluation of a novel cantharimide and its cytotoxicity on SK-Hep-1 hepatoma cells. Bioorg. Med. Chem. Lett., 2007, 17(5), 1155-1159.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.039] [PMID: 17240140]
[6]
Stewart, S.G.; Hill, T.A.; Gilbert, J.; Ackland, S.P.; Sakoff, J.A.; McCluskey, A. Synthesis and biological evaluation of norcantharidin analogues: towards PP1 selectivity. Bioorg. Med. Chem., 2007, 15(23), 7301-7310.
[http://dx.doi.org/10.1016/j.bmc.2007.08.028] [PMID: 17870547]
[7]
Tan, A.; Koc, B.; Sahin, E.; Kishali, N.H.; Kara, Y. Synthesis of new cantharimide analogues derived from 3-sulfolene. Synthesis, 2011, 7, 1079-1084.
[8]
Tan, A.; Bozkurt, E.; Sahin, E.; Kishali, N.H.; Kara, Y. A New and convenient synthesis of amino phthalimide derivatives and their photoluminescent properties. Helv. Chim. Acta, 2014, 97(8), 1107-1114.
[http://dx.doi.org/10.1002/hlca.201300394]
[9]
Tan, A.; Kazancıoglu, M.Z.; Aktas, D.; Gündogdu, O.; Sahin, E.; Kishali, N.H.; Kara, Y. Convenient synthesis of new polysubstituted isoindole-1,3-dione analogues. Turk. J. Chem., 2014, 38, 629-637.
[http://dx.doi.org/10.3906/kim-1310-30]
[10]
Tan, A.; Koc, B.; Kishali, N.H.; Sahin, E.; Kara, Y. Synthesis of new norcantharimide derivatives from 2-methyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3-(2H)-dione. Turk. J. Chem., 2016, 40, 830-840.
[http://dx.doi.org/10.3906/kim-1511-66]
[11]
Tan, A.; Bozkurt, E.; Kara, Y. Investigation of solvent effects on photophysical properties of new aminophthalimide derivatives-based on methanesulfonate. J. Fluoresc., 2017, 27(3), 981-992.
[http://dx.doi.org/10.1007/s10895-017-2033-2] [PMID: 28078631]
[12]
Kose, A.; Bal, Y.; Kishali, N.H.; Sanli-Mohamed, G.; Kara, Y. Synthesis and anticancer activity evaluation of new isoindole analogues. Med. Chem. Res., 2017, 26(4), 779-786.
[http://dx.doi.org/10.1007/s00044-017-1793-1]
[13]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[14]
Walker, M.D.; Green, S.B.; Byar, D.P.; Alexander, E., Jr; Batzdorf, U.; Brooks, W.H.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S., Jr; Mealey, J., Jr; Owens, G.; Ransohoff, J., II; Robertson, J.T.; Shapiro, W.R.; Smith, K.R., Jr; Wilson, C.B.; Strike, T.A. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med., 1980, 303(23), 1323-1329.
[http://dx.doi.org/10.1056/NEJM198012043032303] [PMID: 7001230]
[15]
Subach, B.R.; Witham, T.F.; Kondziolka, D.; Lunsford, L.D.; Bozik, M.; Schiff, D. Morbidity and survival after 1,3-bis(2-chloroethyl)-1-nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case-matched cohort series. Neurosurgery, 1999, 45(1), 17-22.
[http://dx.doi.org/10.1227/00006123-199907000-00004] [PMID: 10414561]
[16]
Chamberlain, M.C.; Kormanik, P. Salvage chemotherapy with taxol for recurrent anaplastic astrocytomas. J. Neurooncol., 1999, 43(1), 71-78.
[http://dx.doi.org/10.1023/A:1006277631745] [PMID: 10448874]
[17]
Demirtas, I.; Gecibesler, I.H.; Sahin, Y.A. Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys byzantine. Phytochem. Lett., 2013, 6, 209-214.
[http://dx.doi.org/10.1016/j.phytol.2013.02.001]
[18]
Erenler, R.; Sen, O.; Aksit, H.; Demirtas, I.; Yaglioglu, A.S.; Elmastas, M.; Telci, İ. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J. Sci. Food Agric., 2016, 96(3), 822-836.
[http://dx.doi.org/10.1002/jsfa.7155] [PMID: 25721137]
[19]
Gürdere, M.B.; Kamo, E.; Budak, Y.; Sahin, Y.A.; Ceylan, M. Synthesis, anticancer and cytotoxic effects of novel 1,4-phenylene-bis-N-thiocarbamoylpyrazole and 1,4-phenylene-bis-pyrazolylthi-azole derivatives. Turk. J. Chem., 2017, 41, 179-189.
[http://dx.doi.org/10.3906/kim-1604-84]
[20]
Kasımogulları, R.; Duran, H.; Sahin, Y.A.; Mert, S.; Demirtas, I. Design, synthesis, characterization, and antiproliferative activity of novel pyrazole-3-carboxylic acid derivatives. Monatsh. Chem., 2015, 146, 1743-1749.
[http://dx.doi.org/10.1007/s00706-015-1450-7]
[21]
Rigaku/MSC, Inc.. . . 9009 New Trails Drive, The Wood-lands, TX; , 77381
[22]
Sheldrick, G.M. SHELXS-97 and SHELXL-97; Pro-gram for Crystal University of Göttingen, 1997.