Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines

Page: [25 - 36] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Bupropion (BUP) is widely used as an antidepressant and smoking cessation aid. There are three major pharmacologically active metabolites of BUP, Erythrohydrobupropion (EB), Hydroxybupropion (OHB) and Threohydrobupropion (TB). At present, the mechanisms underlying the overall disposition and systemic clearance of BUP and its metabolites have not been well understood, and the role of transporters has not been studied.

Objective: The goal of this study was to investigate whether BUP and its active metabolites are substrates of the major hepatic uptake and efflux transporters.

Method: CHO or HEK293 cell lines or plasma membrane vesicles that overexpress OATP1B1, OATP1B3, OATP2B1, OATP4A1, OCT1, BCRP, MRP2 or P-gp were used in cellular or vesicle uptake and inhibition assays. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to quantify transport activity.

Results: BUP and its major active metabolites were actively transported into the CHO or HEK293 cells overexpressing OATP1B1, OATP1B3 or OATP2B1; however, such cellular active uptake could not be inhibited at all by prototypical inhibitors of any of the OATP transporters. These compounds were not transported by OCT1, BCRP, MRP2 or P-gp either. These results suggest that the major known hepatic transporters likely play a minor role in the overall disposition and systemic clearance of BUP and its active metabolites in humans. We also demonstrated that BUP and its metabolites were not transported by OATP4A1, an uptake transporter on the apical membrane of placental syncytiotrophoblasts, suggesting that OATP4A1 is not responsible for the transfer of BUP and its metabolites from the maternal blood to the fetal compartment across the placental barrier in pregnant women.

Conclusion: BUP and metabolites are not substrates of the major hepatic transporters tested and thus these hepatic transporters likely do not play a role in the overall disposition of the drug. Our results also suggest that caution should be taken when using the model CHO and HEK293 cell lines to evaluate potential roles of transporters in drug disposition.

Keywords: Bupropion, hydroxybupropion, threohydrobupropion, erythrohydrobupropion, OATP, OCT1, BCRP, MRP2, P-gp.

Graphical Abstract

[1]
Slemmer, J.E.; Martin, B.R.; Damaj, M.I. bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther., 2000, 295(1), 321-327.
[2]
Cooper, B.R.; Hester, T.J.; Maxwell, R.A. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J. Pharmacol. Exp. Ther., 1980, 215(1), 127-134.
[3]
Ferris, R.M.; Cooper, B.R.; Maxwell, R.A. Studies of bupropion’s mechanism of antidepressant activity. J. Clin. Psychiatry, 1983, 44(5 Pt 2), 74-78.
[4]
Gadde, K.M.; Parker, C.B.; Maner, L.G.; Wagner, H.R.; Logue, E.J.; Drezner, M.K.; Krishnan, K.R.R. Bupropion for weight loss: An investigation of efficacy and tolerability in overweight and obese women. Obes. Res., 2001, 9(9), 544-551.
[5]
Skarydova, L.; Tomanova, R.; Havlikova, L.; Stambergova, H.; Solich, P.; Wsol, V. Deeper insight into the reducing biotransformation of bupropion in the human liver. Drug Metab. Pharmacokinet., 2014, 29(2), 177-184.
[6]
Li, D-J.; Tseng, P-T.; Chen, Y-W.; Wu, C-K.; Lin, P-Y. Significant treatment effect of bupropion in patients with bipolar disorder but similar phase-shifting rate as other antidepressants. Medicine, 2016, 95(13), e3165.
[7]
Ng, Q.X. A systematic review of the use of bupropion for attention-deficit/hyperactivity disorder in children and adolescents. J. Child Adolesc. Psychopharmacol., 2016, 27(2), 112-116.
[8]
Verbeeck, W.; Bekkering, G.E.; Van den Noortgate, W.; Kramers, C. Bupropion for Attention Deficit Hyperactivity Disorder (ADHD) in adults. Cochrane Database Syst. Rev., 2017, 10, CD009504.
[9]
Findlay, J.W.A.; Van Wyck Fleet, J.; Smith, P.G.; Butz, R.F.; Hinton, M.L.; Blum, M.R.; Schroeder, D.H. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur. J. Clin. Pharmacol., 1981, 21(2), 127-135.
[10]
Benowitz, N.L.; Zhu, A.Z.X.; Tyndale, R.F.; Dempsey, D.; Jacob, P. III. Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenet. Genomics, 2013, 23(3), 135-141.
[11]
Schroeder, D.H. Metabolism and kinetics of bupropion. J. Clin. Psychiatry, 1983, 44(5 Pt 2), 79-81.
[12]
Wang, X.; Abdelrahman, D.R.; Zharikova, O.L.; Patrikeeva, S.L.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Bupropion metabolism by human placenta. Biochem. Pharmacol., 2010, 79(11), 1684-1690.
[13]
Meyer, A.; Vuorinen, A.; Zielinska, A.E.; Strajhar, P.; Lavery, G.G.; Schuster, D.; Odermatt, A. Formation of threohydrobupropion from bupropion is dependent on 11β-Hydroxysteroid dehydrogenase 1. Drug Metab. Dispos., 2013, 41(9), 1671-1678.
[14]
Bondarev, M.L.; Bondareva, T.S.; Young, R.; Glennon, R.A. Behavioral and biochemical investigations of bupropion metabolites. Eur. J. Pharmacol., 2003, 474(1), 85-93.
[15]
Jefferson, J.W.; Pradko, J.F.; Muir, K.T. Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin. Ther., 2005, 27(11), 1685-1695.
[16]
Masters, A.R.; Gufford, B.T.; Lu, J.B.L.; Metzger, I.F.; Jones, D.R.; Desta, Z. Chiral plasma pharmacokinetics and urinary excretion of bupropion and metabolites in healthy volunteers. J. Pharmacol. Exp. Ther., 2016, 358(2), 230-238.
[17]
Fokina, V.M.; West, H.; Oncken, C.; Clark, S.M.; Ahmed, M.S.; Hankins, G.D.; Nanovskaya, T.N. Bupropion therapy during pregnancy: the drug and its major metabolites in umbilical cord plasma and amniotic fluid. Am. J. Obstet. Gynecol., , 2016, 215(4), 497e1-7.
[18]
Sager, J.E.; Price, L.S.L.; Isoherranen, N. Stereoselective metabolism of bupropion to OH-Bupropion, threohydrobupropion, erythrohydrobupropion and 4′-OH-Bupropion in vitro. Drug Metab. Dispos., 2016, 44(10), 1709-1719.
[19]
Roth, M.; Obaidat, A.; Hagenbuch, B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol., 2012, 165(5), 1260-1287.
[20]
Wang, H.; Yan, Z.; Dong, M.; Zhu, X.; Wang, H.; Wang, Z. Alteration in placental expression of bile acids transporters OATP1A2, OATP1B1, OATP1B3 in intrahepatic cholestasis of pregnancy. Arch. Gynecol. Obstet., 2012, 285(6), 1535-1540.
[21]
Kullak-Ublick, G.A.; Ismair, M.G.; Stieger, B.; Landmann, L.; Huber, R.; Pizzagalli, F.; Fattinger, K.; Meier, P.J.; Hagenbuch, B. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology, 2001, 120(2), 525-533.
[22]
Hagenbuch, B.; Gui, C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica, 2008, 38(7-8), 778-801.
[23]
Ronaldson, P.; Bauer, B.; El-Kattan, A.; Shen, H.; Salphati, L.; Louie, S. Highlights from the american association of pharmaceutical scientists/ international transporter consortium joint workshop on drug transporters in absorption, distribution, metabolism, and excretion: From the bench to the bedside - Clinical pharmacology C. Clin. Pharmacol. Ther., 2016, 100(5), 419-422.
[24]
Mao, Q.; Ganapathy, V.; Unadkat, J.D. Drug Transport in the Placenta.In Drug Transporters., John Wiley & Sons, Inc.: Hoboken,NJ,. 2014, 341-353.
[25]
Turpeinen, M.; Tolonen, A.; Uusitalo, J.; Jalonen, J.; Pelkonen, O.; Laine, K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin. Pharmacol. Ther., 2005, 77(6), 553-559.
[26]
Tamraz, B.; Fukushima, H.; Wolfe, A.R.; Kaspera, R.; Totah, R.A.; Floyd, J.S.; Ma, B.; Chu, C.; Marciante, K.D.; Heckbert, S.R. OATP1B1-Related drug-drug and drug-gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet. Genomics, 2013, 23(7), 355-364.
[27]
Telles-Correia, D.; Barbosa, A.; Cortez-Pinto, H.; Campos, C.; Rocha, N.B.F.; Machado, S. Psychotropic drugs and liver disease: a critical review of pharmacokinetics and liver toxicity. World J. Gastrointest. Pharmacol. Ther., 2017, 8(1), 26-38.
[28]
Luethi, D.; Liechti, M.E.; Krähenbühl, S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology, 2017, 387, 57-66.
[29]
Köck, K.; Brouwer, K.L.R. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther., 2012, 92(5), 599-612.
[30]
Choi, Y.H.; Yu, A-M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[31]
Joshi, A.A.; Vaidya, S.S.; St-Pierre, M.V.; Mikheev, A.M.; Desino, K.E.; Nyandege, A.N.; Audus, K.L.; Unadkat, J.D.; Gerk, P.M. Placental ABC transporters: Biological impact and pharmaceutical significance. Pharm. Res., 2016, 33(12), 2847-2878.
[32]
Mason, C.W.; Buhimschi, I.A.; Buhimschi, C.S.; Dong, Y.; Weiner, C.P.; Swaan, P.W. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab. Dispos., 2011, 39(6), 1000-1007.
[33]
Ni, Z.; Mao, Q. ATP-binding cassette efflux transporters in human placenta. Curr. Pharm. Biotechnol., 2011, 12(4), 674-685.
[34]
Mao, Q. BCRP/ABCG2 in the placenta: Expression, function and regulation. Pharm. Res., 2008, 25(6), 1244-1255.
[35]
Begley, D.J. ABC transporters and the blood-brain barrier. Curr. Pharm. Des., 2004, 10(12), 1295-1312.
[36]
Miller, D. Regulation of ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 395-403.
[37]
Mahringer, A.; Fricker, G. ABC transporters at the blood-brain barrier. Expert Opin. Drug Metab. Toxicol., 2016, 12(5), 499-508.
[38]
Beckmann, T.F.; Krämer, O.; Klausing, S.; Heinrich, C.; Thüte, T.; Büntemeyer, H.; Hoffrogge, R.; Noll, T. Effects of high passage cultivation on CHO cells: A global analysis. Appl. Microbiol. Biotechnol., 2012, 94(3), 659-671.
[39]
Gao, C.; Liao, M.Z.; Han, L.W.; Thummel, K.E.; Mao, Q. Hepatic transport of 25-Hydroxyvitamin D3 conjugates: A mechanism of 25-Hydroxyvitamin D3 delivery to the intestinal tract. Drug Metab. Dispos., 2018, 46(5), 581-591.
[40]
Wang, X.; Abdelrahman, D.R.; Fokina, V.M.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Metabolism of bupropion by baboon hepatic and placental microsomes. Biochem. Pharmacol., 2011, 82(3), 295-303.
[41]
Lau, Y.Y.; Huang, Y.; Frassetto, L.; Benet, L.Z. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin. Pharmacol. Ther., 2007, 81(2), 194-204.
[42]
Treiber, A.; Schneiter, R.; Hausler, S.; Stieger, B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos., 2007, 35(8), 1400-1407.
[43]
Annaert, P.; Ye, Z.W.; Stieger, B.; Augustijns, P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica, 2010, 40(3), 163-176.
[44]
Okuda, M.; Urakami, Y.; Saito, H.; Inui, K. Molecular mechanisms of organic cation transport in OCT2-expressing xenopus oocytes. Biochim. Biophys. Acta, 1999, 1417(2), 224-231.
[45]
Ho, E.S.; Lin, D.C.; Mendel, D.B.; Cihlar, T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol., 2000, 11(3), 383-393.
[46]
Chu, X.Y.; Bleasby, K.; Yabut, J.; Cai, X.; Chan, G.H.; Hafey, M.J.; Xu, S.; Bergman, A.J.; Braun, M.P.; Dean, D.C. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance p-glycoprotein. J. Pharmacol. Exp. Ther., 2007, 321(2), 673-683.
[47]
Mulato, A.S.; Ho, E.S.; Cihlar, T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther., 2000, 295(1), 10-15.
[48]
Turpeinen, M.; Koivuviita, N.; Tolonen, A.; Reponen, P.; Lundgren, S.; Miettunen, J.; Metsärinne, K.; Rane, A.; Pelkonen, O.; Laine, K. Effect of renal impairment on the pharmacokinetics of bupropion and its metabolites. Br. J. Clin. Pharmacol., 2007, 64(2), 165-173.
[49]
Hayer-Zillgen, M.; Brüss, M.; Bönisch, H. Expression and pharmacological profile of the human organic cation transporters HOCT1, HOCT2 and HOCT3. Br. J. Pharmacol., 2002, 136(6), 829-836.
[50]
Ahlin, G.; Karlsson, J.; Pedersen, J.M.; Gustavsson, L.; Larsson, R.; Matsson, P.; Norinder, U.; Bergström, C.A.S.; Artursson, P. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem., 2008, 51(19), 5932-5942.
[51]
Ahlin, G.; Hilgendorf, C.; Karlsson, J.; Szigyarto, C.A.K.; Uhlén, M.; Artursson, P. Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs. Drug Metab. Dispos., 2009, 37(12), 2275-2283.
[52]
Stepanenko, A.A.; Heng, H.H. Transient and stable vector transfection: pitfalls, off-target effects, artifacts. Mutat. Res. Mutat. Res., 2017, 773, 91-103.
[53]
Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J.R.; Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): Influence of protein expression on drug-drug interactions. J. Med. Chem., 2012, 55(10), 4740-4763.
[54]
Tamai, I.; Nozawa, T.; Koshida, M.; Nezu, J.; Sai, Y.; Tsuji, A. Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm. Res., 2001, 18(9), 1262-1269.
[55]
Noe, J.; Portmann, R.; Brun, M.E.; Funk, C. Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos., 2007, 35(8), 1308-1314.
[56]
Sai, Y.; Kaneko, Y.; Ito, S.; Mitsuoka, K.; Kato, Y.; Tamai, I.; Artursson, P.; Tsuji, A. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal caco-2 cells. Drug Metab. Dispos., 2006, 34(8), 1423-1431.
[57]
Li, X.; Guo, Z.; Wang, Y.; Chen, X.; Liu, J.; Zhong, D. Potential role of organic anion transporting polypeptide 1B1 (OATP1B1) in the selective hepatic uptake of hematoporphyrin monomethyl ether isomers. Acta Pharmacol. Sin., 2015, 36(2), 268-280.
[58]
Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol., 2009, 158(3), 693-705.
[59]
Yang, X.; Hua, W.; Ryu, S.; Yates, P.; Chang, C.; Zhang, H.; Di, L. 11 β -hydroxysteroid dehydrogenase 1 human tissue distribution, selective inhibitor, and role in doxorubicin metabolism. Drug Metab. Dispos., 2018, 46(7), 1023-1029.
[60]
He, J.; Yu, Y.; Prasad, B.; Chen, X.; Unadkat, J.D. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm. Drug Dispos., 2014, 35(5), 253-263.
[61]
Hemauer, S.J.; Patrikeeva, S.L.; Wang, X.; Abdelrahman, D.R.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Role of transporter-mediated efflux in the placental biodisposition of bupropion and its metabolite, oh-bupropion. Biochem. Pharmacol., 2010, 80(7), 1080-1086.
[62]
Earhart, A.D.; Patrikeeva, S.; Wang, X.; Abdelrahman, D.R.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T. Transplacental transfer and metabolism of bupropion. J. Matern. Fetal Neonatal Med., 2010, 23(5), 409-416.
[63]
Nishikawa, M.; Iwano, H.; Yanagisawa, R.; Koike, N.; Inoue, H.; Yokota, H. Placental transfer of conjugated bisphenol a and subsequent reactivation in the rat fetus. Environ. Health Perspect., 2010, 118(9), 1196-1203.
[64]
Sager, J.E.; Price, L.S.L.; Isoherranen, N. stereoselective metabolism of bupropion to OH-bupropion, threohydrobupropion, erythrohydrobupropion, and 4′-OH-bupropion in vitro. Drug Metab. Dispos., 2016, 44(10), 1709-1719.
[65]
Zhou, Q.; Yu, L.S.; Zeng, S. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction. Drug Metab. Rev., 2014, 46(3), 283-290.