Searching for Potential Novel BCR-ABL Tyrosine Kinase Inhibitors Through G-QSAR and Docking Studies of Some Novel 2-Phenazinamine Derivatives

Page: [501 - 510] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity and selectivity over specific BCR-ABL Tyrosine kinase.

Methods: This has been achieved through G-QSAR and molecular docking studies. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2. 2D and structures of ligands were drawn by using Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using semi-empirical method called MOPAC. The protein structure was downloaded as PDB file from RCSC protein data bank. PYMOL was used for studying the binding interactions. The G-QSAR models generated were found to possess training (r2=0.8074), cross-validation (q2=0.6521), and external validation (pred_r2=0.5892) which proved their statistical significance. Accordingly, the newly designed series of 2-phenazinamines viz., 3-chloro-4-aryl-1-(phenazin-7-yl) azetidin-2-ones (4a-4e) were subjected to wet lab synthesis. Alternatively, docking studies were also conducted which showed binding interactions of some derivatives with > 30% higher binding energy values than the standard anticancer drug imatinib. The lower energy values obtained for these derivatives indicate energetically favorable interaction with protein binding site as compared to standard imatinib.

Results: G-QSAR and molecular docking studies predicted better anticancer activity for the synthesized azitidine derivatives of 2-phenazinamines (4a-4e) as compared to standard drug.

Conclusion: It is therefore surmised that the molecular manipulations at appropriate sites of these derivatives suggested by structure activity relationship data will prove to be beneficial in raising anticancer potential.

Keywords: 2-phenazinamine, autodock 4.2, BCR-ABL, Tyrosine kinase, anticancer, docking.

Graphical Abstract

[1]
Schwartsmann, G.; Brondani da Rocha, A.; Berlinck, R.G.; Jimeno, J. Marine organisms as a source of new anticancer agents. Lancet Oncol., 2001, 2(4), 221-225.
[http://dx.doi.org/10.1016/S1470-2045(00)00292-8] [PMID: 11905767]
[2]
Khazir, J.; Mir, B.A.; Pilcher, L.; Riley, D.L. Role of plants in anticancer drug discovery. Phytochem. Lett., 2014, 7(1), 173-181.
[http://dx.doi.org/10.1016/j.phytol.2013.11.010]
[3]
Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett., 2014, 351(1), 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189]
[4]
McCallum, L.; Price, S.; Planque, N.; Perbal, B.; Pierce, A.; Whetton, A.D.; Irvine, A.E. A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood, 2006, 108(5), 1716-1723.
[http://dx.doi.org/10.1182/blood-2006-04-016113] [PMID: 16670264]
[5]
Muller, a J.; Young, J. C; Pendergast, a M.; Pondel, M.; Landau, N. R.; Littman, D. R.; Witte, O. N. Mol. Cell. Biol., 1991, 11(4), 1785.
[PMID: 2005881]
[6]
Li, S.; Couvillon, A.D.; Brasher, B.B.; Van Etten, R.A. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. EMBO J., 2001, 20(23), 6793-6804.
[http://dx.doi.org/10.1093/emboj/20.23.6793] [PMID: 11726515]
[7]
Dorsey, J.F.; Cunnick, J.M.; Lanehart, R.; Huang, M.; Kraker, A.J.; Bhalla, K.N.; Jove, R.; Wu, J. Interleukin-3 protects Bcr-Abl-transformed hematopoietic progenitor cells from apoptosis induced by Bcr-Abl tyrosine kinase inhibitors. Leukemia, 2002, 16(9), 1589-1595.
[http://dx.doi.org/10.1038/sj.leu.2402678] [PMID: 12200668]
[8]
O’Dwyer, M.E.; Mauro, M.J.; Druker, B.J. STI571 as a targeted therapy for CML. Cancer Invest., 2003, 21(3), 429-438.
[http://dx.doi.org/10.1081/CNV-120018235] [PMID: 12901289]
[9]
Ajmani, S.; Jadhav, K.; Kulkarni, S.A. QSAR Comb. Sci., 2009, 28(1), 36.
[http://dx.doi.org/10.1002/qsar.200810063]
[10]
Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167(10), 616-622.
[http://dx.doi.org/10.1016/j.micres.2012.02.008] [PMID: 22494896]
[11]
Gao, X.; Lu, Y.; Fang, L.; Fang, X.; Xing, Y.; Gou, S.; Xi, T. Synthesis and anticancer activity of some novel 2-phenazinamine derivatives. Eur. J. Med. Chem., 2013, 69(1), 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.017] [PMID: 23995213]
[12]
Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem., 1999, 20(7), 720.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<720:AID-JCC7>3.0.CO;2-X]
[13]
Gunturi, S.B.; Narayanan, R. In silico ADME modeling 3: computational models to predict human intestinal absorption using sphere exclusion and kNN QSAR methods. QSAR Comb. Sci., 2007, 26(5), 653.
[http://dx.doi.org/10.1002/qsar.200630094]
[14]
Höskuldsson, A. PLS regression methods. J. Chemometr., 1988, 2(3), 211.
[http://dx.doi.org/10.1002/cem.1180020306]
[15]
Gefen, D. A practical guide to factorial validity using PLS-Graph: tutorial and annotated example. Comm. Assoc. Inform. Syst., 2005, 16(5), 91.
[16]
Verron, T.; Sabatier, R.; Joffre, R. Some theoretical properties of the O‐PLS method. J. Chemometr., 2004, 18(2), 62.
[http://dx.doi.org/10.1002/cem.847]
[17]
Linusson, a.; Elofsson, M.; Andersson, I. E.; Dahlgren, M. K. Statistical molecular design of balanced compound libraries for QSAR modeling. Curr. Med. Chem., 2010, 17, 2001.
[18]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[19]
Testa, B. QSAR: Hansch analysis and related approaches: By Hugo Kubinyi, VCH Verlag, 1993. Trends Pharmacol. Sci., 1995, 16(8), 280.
[http://dx.doi.org/10.1016/S0165-6147(00)89046-X]
[20]
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci., 2007, 26(5), 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[21]
Basu, D.; Rubin, D.B. Randomization analysis of experimental data: the fisher randomization test. J. Am. Stat. Assoc., 1980, 75(371), 575.
[http://dx.doi.org/10.1080/01621459.1980.10477512]
[22]
Huang, T-H.; Leu, Y.; Pan, W-T. Constructing ZSCORE-based financial crisis warning models using fruit fly optimization algorithm and general regression neural network. Kybernetes, 2016, 45(4), 650.
[http://dx.doi.org/10.1108/K-08-2015-0208]
[23]
Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.D.; Lee, K.H.; Tropsha, A. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des., 2003, 17(2-4), 241-253.
[http://dx.doi.org/10.1023/A:1025386326946] [PMID: 13677490]
[24]
Eberly, L.E. Multiple linear regression. Methods Mol. Biol., 2007, 404, 165-187.
[http://dx.doi.org/10.1007/978-1-59745-530-5_9] [PMID: 18450050]
[25]
RCSB. Research Collaboratory for Structural Bioinformatics., Available at : https://www.rcsb.org/pages/about-us/index
[26]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.N.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[27]
Regression, L.; Overview, B. Alternatives, 1997, 1.
[28]
Rosenfeld, R.J.; Goodsell, D.S.; Musah, R.A.; Morris, G.M.; Goodin, D.B.; Olson, A.J. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. J. Comput. Aided Mol. Des., 2003, 17(8), 525-536.
[http://dx.doi.org/10.1023/B:JCAM.0000004604.87558.02] [PMID: 14703123]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform., 2009, 15(1), 1-15.
[http://dx.doi.org/10.1186/1758-2946-1-15]
[31]
di Bosco, A.M.; Grieco, P.; Diurno, M.V.; Campiglia, P.; Novellino, E.; Mazzoni, O. Binding site of loperamide: automated docking of loperamide in human mu- and delta-opioid receptors. Chem. Biol. Drug Des., 2008, 71(4), 328-335.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00637.x] [PMID: 18284554]
[32]
Diekmann, H.; Hill, A. ADMETox in zebrafish. Drug Discov. Today Dis. Models, 2013, 10(1), e31-e35.
[33]
Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 2001, 6(7), 357-366.
[http://dx.doi.org/10.1016/S1359-6446(01)01712-3] [PMID: 11267922]
[34]
Hemmateenejad, B. Correlation ranking procedure for factor selection in PC-ANN modeling and application to ADMETox evaluation. Chemom. Intell. Lab. Syst., 2005, 75(2), 231.
[http://dx.doi.org/10.1016/j.chemolab.2004.09.005]