[1]
Ertan-Bolelli, T.; Yildiz, İ.; Ozgen-Ozgacar, S. Synthesis, molecular docking and antimicrobial evaluation of novel benzoxazole derivatives. Med. Chem. Res., 2016, 25(4), 553-567.
[2]
Regiel-Futyra, A.; Dabrowski, J.M.; Mazuryk, O.; S’piewak, A.K.; Pucelik, B.; Brindell, M.; Stochel, G. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev., 2017, 351, 76-117.
[3]
Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries., 2014, 8(2), 129-136.
[4]
Gales, A.C.; Jones, R.N.; Sader, H.S. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J. Antimicrob. Chemother., 2011, 66(9), 2070-2074.
[5]
Marra, A.R.; Camargo, L.F.; Pignatari, A.C.; Sukiennik, T.; Behar, P.R.; Medeiros, E.A.; Ribeiro, J.; Girao, E.; Correa, L.; Guerra, C.; Brites, C.; Pereira, C.A.; Carneiro, I.; Reis, M.; de Souza, M.A.; Tranchesi, R.; Barata, C.U.; Edmond, M.B.; Brazilian, S.S.G. Nosocomial bloodstream infections in Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide surveillance study. J. Clin. Microbiol., 2011, 49(5), 1866-1871.
[6]
Rosenthal, V.D.; Al-Abdely, H.M.; El-Kholy, A.A.; AlKhawaja, S.A.; Leblebicioglu, H.; Mehta, Y.; Rai, V.; Hung, N.V.; Kanj, S.S.; Salama, M.F.; Salgado-Yepez, E.; Elahi, N.; Morfin Otero, R.; Apisarnthanarak, A.; De Carvalho, B.M.; Ider, B.E.; Fisher, D.; Buenaflor, M.C.; Petrov, M.M.; Quesada-Mora, A.M.; Zand, F.; Gurskis, V.; Anguseva, T.; Ikram, A.; Aguilar de Moros, D.; Duszynska, W.; Mejia, N.; Horhat, F.G.; Belskiy, V.; Mioljevic, V.; Di Silvestre, G.; Furova, K.; Ramos-Ortiz, G.Y.; Gamar Elanbya, M.O.; Satari, H.I.; Gupta, U.; Dendane, T.; Raka, L.; Guanche-Garcell, H.; Hu, B.; Padgett, D.; Jayatilleke, K.; Ben Jaballah, N.; Apostolopoulou, E.; Prudencio Leon, W.E.; Sepulveda-Chavez, A.; Telechea, H.M.; Trotter, A.; Alvarez-Moreno, C.; Kushner-Davalos, L. International nosocomial infection control consortium report, data summary of 50 countries for 2010-2015: Device-associated module. Am. J. Infect. Control, 2016, 44(12), 1495-1504.
[8]
Gould, I.M.; Bal, A.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence, 2013, 4(2), 185-191.
[9]
Trubiano, J.A.; Padiglione, A.A. Nosocomial infections in the intensive care unit. Anaesth. Intensive Care, 2015, 16(12), 598-602.
[10]
Schelenz, S. Management of candidiasis in the intensive care unit. J. Antimicrob. Chemother., 2008, 61(Suppl. 1), i31-i34.
[11]
Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed., 2017, 7(5), 478-482.
[12]
Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Foye’s principles of medicinal chemistry, 6th ed; Lippincott Williams & Wilkins: New York, 2008.
[13]
Tenório, R.P.; Góes, A.J.; de Lima, J.G.; de Faria, A.R.; Alves, A.J.; de Aquino, T.M. Tiossemicarbazonas: métodos de obtenção, aplicações sintéticas e importância biológica. Quim. Nova, 2005, 28(6), 1030-1037.
[14]
Pandiarajan, D.; Ramesh, R.; Liu, Y. Suresh, R. Palladium(II) thiosemicarbazone-catalyzed Suzuki–Miyaura cross-coupling reactions of aryl halides. Inorg. Chem. Commun., 2013, 33, 33-37.
[15]
Ramdass, A.; Sathish, V.; Velayudham, M.; Thanasekaran, P.; Lu, K.; Rajagopal, S. Monometallic rhenium(I) complexes as sensor for anions. Inorg. Chem. Commun., 2013, 35, 186-191.
[16]
Matesanz, A.I.; Tapia, S.; Souza, P. First 3,5-diacetyl-1,2,4-triazol derived mono(thiosemicarbazone) and its palladium and platinum complexes: Synthesis, structure and biological properties. Inor-ganica Chim. Acta, 2016, 445, 62-69.
[17]
Stefani, C.; Al-Eisawi, Z.; Jansson, P.J.; Kalinowski, D.S.
Richardson, D.R. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J. Inorg. Biochem., 2015, 152, 20-37.
[18]
Haribabu, J.; Subhashree, G.R.; Saranya, S.; Gomathi, K.; Karvembu, R.; Gayathri, D. Isatin based thiosemicarbazone derivatives as potential bioactive agents: Anti-oxidant and molecular docking studies. J. Mol. Struct., 2016, 1110, 185-195.
[19]
Rodriguez-Arguelles, M.C.; Touron-Touceda, P.; Cao, R.; Garcia-Deibe, A.M.; Pelagatti, P.; Pelizzi, C.; Zani, F. Complexes of 2-acetyl-gamma-butyrolactone and 2-furancarbaldehyde thiosemicarbazones: antibacterial and antifungal activity. J. Inorg. Biochem., 2009, 103(1), 35-42.
[20]
Parrilha, G.L.; da Silva, J.G.; Gouveia, L.F.; Gasparoto, A.K.; Dias, R.P.; Rocha, W.R.; Santos, D.A.; Speziali, N.L.; Beraldo, H. Pyridine-derived thiosemicarbazones and their tin(IV) complexes with antifungal activity against Candida spp. Eur. J. Med. Chem., 2011, 46(5), 1473-1482.
[21]
Ilies, D.C.; Pahontu, E.; Shova, S.; Georgescu, R.; Stanica, N.; Olar, R.; Gulea, A.; Rosu, T. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with a thiosemicarbazone derived from 3-formyl-6-methylchromone. Polyhedron, 2014, 81, 123-131.
[22]
Senwar, K.R.; Sharma, P.; Reddy, T.S.; Jeengar, M.K.; Nayak, V.L.; Naidu, V.G.; Kamal, A.; Shankaraiah, N. Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. Eur. J. Med. Chem., 2015, 102, 413-424.
[23]
Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 87-94.
[24]
Karad, S.C.; Purohit, V.B.; Raval, D.K. Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening. Eur. J. Med. Chem., 2014, 84, 51-58.
[25]
Smelcerovic, A.; Rangelov, M.; Smelcerovic, Z.; Veljkovic, A.; Cherneva, E.; Yancheva, D.; Nikolic, G.M.; Petronijevic, Z.; Kocic, G. Two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones as new non-purine xanthine oxidase inhibitors and anti-inflammatory agents. Food Chem. Toxicol., 2013, 55, 493-497.
[26]
Ladopoulou, E.M.; Matralis, A.N.; Nikitakis, A.; Kourounakis, A.P. Antihyperlipidemic morpholine derivatives with antioxidant activity: An investigation of the aromatic substitution. Bioorg. Med. Chem., 2015, 23(21), 7015-7023.
[27]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[28]
Kumbhare, R.M.; Dadmal, T.L.; Pamanji, R.; Kosurkar, U.B.; Velatooru, L.R.; Appalanaidu, K.; Khageswara Rao, Y.; Venkateswara Rao, J. Synthesis of novel fluoro 1,2,3-triazole tagged amino bis(benzothiazole) derivatives, their antimicrobial and anticancer activity. Med. Chem. Res., 2014, 23(10), 4404-4413.
[29]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[30]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Kumar, V. 1H-1,2,3-triazole tethered mono- and bis-ferrocenylchalcone-beta-lactam conjugates: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 86, 113-121.
[31]
Kaushik, C.P.; Lal, K.; Kumar, A.; Kumar, S. Synthesis and biological evaluation of amino acid-linked 1,2,3-bistriazole conjugates as potential antimicrobial agents. Med. Chem. Res., 2014, 23(6), 2995-3004.
[32]
Still, W.C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem., 1978, 43(14), 2923-2925.
[33]
Clinical and Laboratory Standards Institute (CLSI) Reference method for broth dilution antifungal susceptibility testing of yeast; approved Standard M27-A3, 3rd ed; Clinical and Laboratory Standarts Institute: Pennsylvania, 2008.
[34]
Teinkela, J.E.M.; Noundod, X.S.; Fannang, S.; Meyer, F.; Vardamides, J.C.; Mpondo, E.M.; Krause, R.W.M.; Azebaze, A.G.B.; Nguedia, J.C.A. In vitro antimicrobial activity of the methanol extract and compoundsfrom the wood of Ficus elastic Roxb. ex Hornem aerial roots. S. African . J. Bot., 2017, 111, 302-306.
[35]
Duarte, M.C.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol., 2005, 97(2), 305-311.
[36]
Clinical and Laboratory Standards Institute (CSLI) Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically; Approved Standard-NCCLS. 6th ed.; CLSI document M7-A6:Pennsylvania. , 2012.
[37]
Guo, Z.; Li, Q.; Wang, G.; Dong, F.; Zhou, H.; Zhang, J. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene. Carbohydr. Polym., 2014, 99, 469-473.
[38]
Mbaveng, A.T.; Sandjo, L.P.; Tankeo, S.B.; Ndifor, A.R.; Pantaleon, A.; Nagdjui, B.T.; Kuete, V. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes. Springerplus, 2015, 4, 823.
[39]
Sander, T.; Freyss, J.; Korff, M.V.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[41]
Cooper, S.R. Resacetophenone. Org. Synth., 1941, 21, 103.
[42]
Da Silva, G.D.; Da Silva, M.G.; Souza, E.M.; Barizon, A.; Simoes, S.C.; Varotti, F.P.; Barbosa, L.A.; Viana, G.H.; Villar, J.A.F.P. Design and synthesis of new chalcones substituted with azide/triazole groups and analysis of their cytotoxicity towards HeLa cells. Molecules, 2012, 17, 10331-10343.
[43]
Kothavade, R.J.; Kura, M.M.; Valand, A.G.; Panthaki, M.H. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol., 2010, 59(8), 873-880.
[44]
Pfaller, M.A.; Moet, G.J.; Messer, S.A.; Jones, R.N.; Castanheira, M. Candida Bloodstream Infections: Comparison of Species Distributions and Antifungal Resistance Patterns in Community-Onset and Nosocomial Isolates in the SENTRY Antimicrobial Surveillance Program, 2008-2009. Antimicrob. Agents Chemother., 2011, 55(2), 561-566.
[45]
Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev., 2012, 36(2), 288-305.
[46]
Marchi, E.; Furi, L.; Arioli, S.; Morrissey, I.; Di Lorenzo, V.; Mora, D.; Giovannetti, L.; Oggioni, M.R.; Viti, C. Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus. Microbiol. Res., 2015, 170, 184-194.
[48]
Souza, M.A.; Johann, S.; Lima, L.A.; Campos, F.F.; Mendes, I.C.; Beraldo, H.; Souza-Fagundes, E.M.; Cisalpino, P.S.; Rosa, C.A.; Alves, T.M.; de Sa, N.P.; Zani, C.L. The antimicrobial activity of lapachol and its thiosemicarbazone and semicarbazone derivatives. Mem. Inst. Oswaldo Cruz, 2013, 108(3), 342-351.
[49]
Oliveira, M.T.A.; Teixeira, A.M.R.; Cassiano, C.J.M.; Sena, Jr , D.M.; Coutinho, H.D.M.; Menezes, I.R.A.; Figueredo, F.G.; Silva, L.E.; Toledo, T.A.; Bento, R.R.F. Modulation of the antibiotic activity against multidrug resistant strains of 4-(phenylsulfonyl) morpholine. Saudi J. Biol. Sci., 2016, 23(1), 34-38.
[50]
Kant, R.; Singh, V.; Nath, G.; Awasthi, S.K.; Agarwal, A. Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1,2,3-triazole conjugates as potent antibacterial agents. Eur. J. Med. Chem., 2016, 124, 218-228.
[51]
Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H. 1-(1-Arylethylidene) thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2008, 16, 1096-1102.
[52]
Zhenga, J.; Zhanga, R.; Chena, Y.; Yea, X.; Chena, Q.; Shenb, D.; Wanga, Q. Synthesis of caffeic acid ester morpholines and their activation effects on tyrosinase. Proc Biochem., 2017, 62, 91-98.
[53]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-2.