Preparation and Antitubercular Activities of Palindromic Hydrazinecarbothioamides and Carbonothioic Dihydrazides

Page: [1202 - 1210] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: With approximately one-third of the world’s population infected, tuberculosis continues to be a global public health crisis. The rise of strains that are unusually virulent or highly resistant to current drugs is a cause of special concern, prompting research into new classes of compounds, as well as the re-evaluation of known chemotherapeutic agents.

Objectives: The antimycobacterial activities associated with some recently-reported thiocarbonyl compounds kindled our interest in the synthesis of substituted hydrazinecarbothioamides (3) and carbonothioic dihydrazides (4), with the aim of investigating their potential in antitubercular drug design and discovery.

Methods: In the present study, the title compounds 3 and 4 were prepared by the condensation of hydrazines with isothiocyanates in reactions readily controlled by stoichiometry, temperature and solvent. The compounds were assessed against Mycobacterium bovis BCG in Kirby-Bauer disc diffusion, and minimum inhibitory concentrations were determined against the virulent strain M. tuberculosis Erdman.

Results: The chemical structures of these thermally stable compounds were determined by IR, 1HNMR, 13C-NMR, high-resolution mass spectrometry and elemental analysis. In the Kirby-Bauer disc diffusion assay, some of the compounds showed substantial diameters of inhibition against BCG. In some cases, the zones of inhibition were so large that no growth at all was observed on the assay plates. Against M. tuberculosis Erdman, several of the compounds showed significant activities. Compound 3h was the most active, demonstrating a minimum inhibitory concentration of 0.5 µg/mL.

Conclusion: We found that the title compounds may be prepared conveniently in excellent purity and good yields. They are readily identified on the basis of their characteristic spectra. Some members of this class showed significant activities against mycobacteria. We conclude that further work will be warranted in exploring the antitubercular properties of these compounds.

Keywords: Tuberculosis, hydrazinecarbothioamide, carbonothioic dihydrazide, thiourea, antitubercular, kirby-bauer, isoxyl, thiacetazone.

Graphical Abstract

[1]
World Health Organization Global Tuberculosis Report 2017, 2018.http://www.who. int/tb/publications/global_report/en/
[2]
Horsburgh, C.; Barry, C.; Lange, C. Treatment of tuberculosis. N. Engl. J. Med., 2015, 373, 2149-2160.
[http://dx.doi.org/10.1056/NEJMra1413919]
[3]
Zumla, A.; Nahid, P.; Cole, S. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
[http://dx.doi.org/10.1038/nrd4001]
[4]
Glaziou, P.; Sismanidis, K.; Raviglione, M. Global epidemiology of tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 39(3), 271-285.
[http://dx.doi.org/10.1101/cshperspect.a017798]
[5]
Smith, T.; Wolff, K.; Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol., 2013, 374, 53-80.
[http://dx.doi.org/10.1007/82_2012_279]
[6]
Davies, J. Antibiotic resistance in mycobacteria. Genetics and Tuberculosis, Novartis Foundation Symposia, John Wiley and Sons. Limited., 1998, 34, 195.
[7]
Buu-Hoi, N.P.; Xuong, N.D. Sur les composées tubercu-lostatiques du groupe de la thiourée et leur mecanisme d’action. Compt. rend. Acad. Sci., 1953, 237, 498-500.
[8]
Kharizanova, T.; Kozhukharov, P.; Gusteva, D.; Simova, V. Antitubercular activity of thiocarbamide derivatives. Far-matsiya (Sofia, Bulgaria), 1969, 19, 33-38.
[9]
Kulkarni, S.; Kamath, S.; Devasthale, S.; Hooper, M. An-tituberculosis compounds. Part VII. Towards the design of novel antimycobacterial agents. Indian Drugs, 1988, 25, 464-466.
[10]
Shinde, B.R.; Shinde, N.M.; Parab, G.S. Thiourea deriva-tives as antitubercular compounds. Curr. Sci., 1982, 51, 704-705.
[11]
Mayer, R.L.; Eisman, P.C.; Knopka, E.A. Antituberculous activity of substituted thioureas. Proc. Soc. Exp. Biol. Med., 1953, 82, 769-774.
[http://dx.doi.org/10.3181/00379727-82-20241]
[12]
Lambelin, G.; Parmentier, R. The toxicity of isoxyl. Arzneimittelforschung, 1966, 16, 881-886.
[13]
Meissner, G.; Stottmeier, G. The sensitivity of mycobacteria to 4,4-bis(isoamyloxy)thio- carbanilide (isoxyl). Beitraege zur Klinik der Tuberkulose, 1965, 130, 289-295.
[http://dx.doi.org/10.1007/BF02150591]
[14]
Tacquet, A.; Devulder, B.; Tison, F.; Martin, J.C. Effect of isoxyl on Mycobacterium kansasii: Studies in vitro and in pneumoconiotic guinea pigs. Antibiot. Chemother., 1970, 16, 160-176.
[http://dx.doi.org/10.1159/000386818]
[15]
Nickling, H. Clinical experiences with thiocarlide (Isoxyl) in combination therapy of freshly evaluated tuberculosis. Antibiot. Chemother., 1970, 16, 136-138.
[http://dx.doi.org/10.1159/000386814]
[16]
Zucchetto, C. Clinical observations on the employment of 4,4′-di(isoamyloxy)thiocarbanilide (Isoxyl) in pulmonary tu-berculosis therapy. Arch. Tisiol. Mal. Appar. Respir., 1967, 22, 590-608.
[17]
Phetsuksiri, B.; Baulard, A.; Cooper, A.; Minnikin, D.; Doug-las, J.; Besra, G.; Brennan, P. Antimycobacterial activities of Isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob. Agents Chemother., 1999, 43, 1042-1051.
[http://dx.doi.org/10.1128/AAC.43.5.1042]
[18]
Phetsuksiri, B.; Jackson, M.; Scherman, H.; McNeil, M.; Besra, G.S.; Baulard, A.R.; Slayden, R.A.; DeBarber, A.E.; Barry, C.E., III; Baird, M.S.; Crick, D.C.; Brennan, P.J. Unique mechanism of action of the thiourea drug Isoxyl on Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278, 53123-53130.
[http://dx.doi.org/10.1074/jbc.M311209200]
[19]
Grzegorzewicz, A.; Eynard, N.; Quémard, A.; North, E.J.; Margolis, A.; Lindenberger, J.; Jones, V.; Korduláková, J.; Brennan, P.; Lee, R.; Ronning, D.; McNeil, M.; Jackson, M. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect. Dis., 2015, 1, 91-97.
[http://dx.doi.org/10.1021/id500032q]
[20]
Brown, J.; North, E.; Hurdle, J.; Morisseau, C.; Scarborough, J.; Sun, D.; Korduláková, J.; Scherman, M.; Jones, V.; Grze-gorzewicz, A.; Crew, R.; Jackson, M.; McNeil, M.; Lee, R. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem., 2011, 19, 5585-5595.
[http://dx.doi.org/10.1016/j.bmc.2011.07.034]
[21]
Coxon, G.; Craig, D.; Corrales, R.; Vialla, E.; Gannoun-Zaki, L.; Kremer, L. Synthesis, antitubercular activity and mecha-nism of resistance of highly effective thiacetazone analogues. PLoS One, 2013, 8e53162.
[http://dx.doi.org/10.1371/journal.pone.0053162]
[22]
Kucukguzel, I.; Tatar, E.; Kucukguzel, S.; Rollas, S.; DeClerq, E. Synthesis of some novel thioureas derivatives obtained from 5-[4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and antituberculosis agents. Eur. J. Med. Chem., 2008, 43, 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010]
[23]
Lakum, H.; Shah, D.; Chikhalia, K. The novel derivatives of 3-(iminomethyl)-2H-chromene-2-one with thiourea and pi-perazine structural motive: rationale, synthesis, antimicrobial and anti-TB evaluation. Lett. Drug Des. Discov., 2015, 12, 324-341.
[http://dx.doi.org/10.2174/1570180811666141009234835]
[24]
Medapi, B.; Renuka, J.; Saxena, S.; Sridevi, J.P.; Medishetti, R.; Kulkarni, P.; Yogeeswari, P.; Sriram, D. Design and syn-thesis of novel quinoline-aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors. Bioorg. Med. Chem., 2015, 23, 2062-2078.
[http://dx.doi.org/10.1016/j.bmc.2015.03.004]
[25]
Tatar, E.; Karakus, S.; Kucukguzel, S.; Okulu, S.; Unubol, N.; Kacagoz, T.; De Clerq, E.; Andrei, G.; Snoeck, R.; Pannecouque, C.; Kalayci, S.; Sahin, F.; Sriram, D.; Yogees-wari, P.; Kucukguzel, I. Design, synthesis and molecular docking studies of a conjugated thiadiazoles-thiourea scaffold as antituberculosis agents. Biol. Pharm. Bull., 2016, 39, 502-515.
[http://dx.doi.org/10.1248/bpb.b15-00698]
[26]
Kawle, P.; Deohate, P. MW induced preparation of acridin-9-yl-bis-benzothiazol-2-yl-amines and antituberculosis activity. Am. J. Pharm. Tech. Res., 2016, 6, 216-222.
[27]
Fussenegger, M.; Weber, W.; Schoenmakers, R. Composition for treatment of tuberculosis. United States Patent 9050295, Chem. Abstr., 2015.
[28]
Kesicki, E.; Bailey, M.; Ovechkina, Y.; Early, J.; Alling, T.; Bowman, J.; Zuniga, E.; Dalai, S.; Kumar, N.; Masquelin, T.; Hipskind, P.; Odingo, J.; Parish, T. Synthesis and evaluation of the 2- aminothiazoles as anti-tubercular agents. PLoS One, 2016.11e0155209.
[http://dx.doi.org/0.1371/journal.pone.0155209]
[29]
Hearn, M.J. Derivatives of phenyl 4-aminosalicylate and method of making the same. United States Patent 6,600,063, Chem. Abstr., 2003.
[30]
Hearn, M.J. Antimycobacterial compounds and method for making the same. United States Patent 6,846,933 Chem. Abstr, 2001.
[31]
Hearn, M.; Wang, T.; Cynamon, M. Synthesis and characterization of new 1-(4- methylpiperazin-1-yl)-thioureas as potential antitubercular agents. J. Heterocycl. Chem., 2017, 54, 720-727.
[http://dx.doi.org/10.1002/jhet.2551]
[32]
Dubenko, R.; Pel’kis, P. Symmetrical derivatives of 1,6-diarylhydrazodithiodicarboxamide. Ukrains’kii Khemichnii Zhurnal, 1961, 27, 669-671.
[33]
Buu-Hoi, N.; Xuong, N.; Nam, N. Potential antiviral thiourea derivatives. J. Chem. Soc., 1956, 2160-2165.
[http://dx.doi.org/10.1039/JR9560002160]
[34]
Janniah, S.; Guha, P. Constitution of the so-called dithiourazole of Martin Freund. V. Isomerism of hydrazodithiodicar-boxamides, iminothiolthiobiazoles and di-R-iminothiobiazoles. J. Indian Inst. Sci., 1933, 16A, 11-18.
[35]
Grammaticakis, P. The absorption in the middle ultraviolet and the visible of α,β-disubstituted hydrazines and their oxidation products. III. Diacylhydrazines, diacyldiimides, and 1,3,4-oxadiazoles. Bull. Soc. Chim. Fr., 1953, 12, 86-93.
[36]
Stanovnik, B.; Tisler, M. Reaction of diethyl carbonate with 4-substituted thiosemicarbazides. J. Org. Chem., 1961, 26, 5200-5202.
[http://dx.doi.org/10.1021/jo01070a511]
[37]
Eberhardt, U.; Depner, J. Thiocarbamoylhydrazine derivatives in veterinary pharmaceuticals. Part 2. Transformation of tri-aminoguanidine with mustard. Pharmazie, 1977, 32, 458-460.
[38]
Makki, M.; Abdel-Rahman, R.; El-Shahawi, M. Synthesis of new bioactive sulfur compounds bearing heterocyclic moiety and their analytical applications. Int. J. Chem. (Toronto), 2011, 3, 181-192.
[http://dx.doi.org/10.5539/ijc.v3n1p181]
[39]
Abbasi, M.; Trivedi, J. Synthesis of 1-aryl(alkyl)(aralkyl) dithiourazoles. J. Indian Chem. Soc., 1965, 42, 333-335.
[40]
Katritzky, A.; Khashab, N.; Gromova, A. Preparations of diversely substituted thiosemicarbazides and N-hydroxythioureas. ARKIVOC, 2006, 3, 226-236.
[41]
Drobnica, L.; Kristian, P.; Augustin, J. The Chemistry of the -NCS Group.The Chemistry of Cyanates and Their Thio Derivatives; John Wiley and Sons, 1977, pp. 1003-1221.
[42]
Hearn, M.; Chen, M.; Cynamon, M.; Wang’ondu, R.; Webster, E. Preparation and properties of new antitubercular thioureas. J. Sulfur Chem., 2006, 27, 149-164.
[http://dx.doi.org/10.1080/17415990600576826]
[43]
Hudzicki, J. American Society for Microbiology Kirby-Bauer Disk Diffusion Susceptibility Test Protocol., 2009.http://www.asmscience.org/content/education/protocol/protocol.3189
[44]
Shoen, C.; DeStafano, M.; Sklaney, M.; Monica, B.; Slee, A.; Cynamon, M. Short-course treatment regimen to identify potential antituberculous agents in a murine model of tuberculosis. J. Antimicrob. Chemother., 2004, 53, 641-645.
[http://dx.doi.org/10.1093/jac/dkh124]
[45]
Vestal, A. Procedures for the isolation and identification of mycobacteria. Public Health Service Publication No. 1995, Laboratory Division, National Communicable Disease Center, 1995, 113-115.
[46]
Wong, S.; Palmer, S.; Cynamon, M. In-vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium kansasii to amoxycillin and ticarcillin in combination with clavulanic acid. J. Antimicrob. Chemother., 1988, 22, 863-866.
[http://dx.doi.org/10.1093/jac/22.6.863]
[47]
Manabe, Y.; Dannenberg, A.; Tyagi, S.; Hatem, C.; Yoder, M.; Woolwine, S.; Zook, B.; Pitt, M.; Bishai, W. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect. Immun., 2003, 71, 6004-6011.
[http://dx.doi.org/10.1128/IAI.71.10.6004-6011.2003]
[48]
Jayaraman, P.; Siddiqi, M.; Sakharkar, M.; Chandra, R.; Sakharkar, K. Hypothesis-driven multi-target drug design; Drug and Vaccine Dev, 2015.
[49]
Lipinski, C. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1, 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007]
[50]
Rastogi, N.; Goh, K. Action of 1-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and enhancement of its activity by m-fluorophenylalanine. Antimicrob. Agents Chemother., 1990, 34, 2061-2064.
[http://dx.doi.org/10.1128/AAC.34.11.2061]
[51]
Rastogi, N.; Moreau, B.; Capmau, M.; Goh, K.; David, H. Antibacterial action of amphipathic derivatives of isoniazid against the Mycobacterium avium complex. Zentralbl. Bakteriol. Mikrobiol. Hyg. A, 1988, 268, 456-462.
[http://dx.doi.org/10.1016/S0176-6724(88)80123-8]
[52]
Rao, C.; Venkataraghavan, J.C. S stretching frequency and the -N-C:S bands in the infrared. Spectrochimica Acta, 1962, 18, 541-547.
[http://dx.doi.org/10.1016/S0371-1951(62)80164-7]