Synthesis and Cytotoxicity Studies on Novel Piperazinylacetamides

Page: [45 - 51] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: In this study, nine novel compounds, bearing N-[2-(4-substituted piperazine-1-yl)acetyl]-N’-[bis-(4-fluorophenyl)methyl]piperazine structures were synthesized.

Methods: Their cytotoxic properties were evaluated in vitro by NCI-60 Sulforhodamine B (SRB) assay against human cancer cell lines: Huh7 (hepatocellular), MCF7 (breast) and HCT116 (colorectal).

Results and Conclusion: According to the activity data, most of the compounds are more cytotoxic than 5-fluorouracil against Huh7 and HCT116 cancer cell lines.

Keywords: Acetamide, anticancer, benzhydrylpiperazine, cytotoxicity, piperazine, sulforhodamine B.

Graphical Abstract

[1]
Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 1(2), 1-7.
[2]
Callery, P.; Gannett, P. In: Foye’s Principles of Medicinal Chemistry.Lippincott Williams &Wilkins, 7th ed; Williams, D.A.; Lemke, T.L., Eds.; USA, 2002, pp. 924-951.
[3]
Paul, R.; Brockman, J.A.; Hallett, W.A.; Tarrant, M.E.; Torley, L.W.; Callahan, F.M.; Fabio, P.F.; Johnson, B.D.; Lenhard, R.H.; Schaub, R.E.; Wissner, A. Imidazo[1,5-d][1,2,4]triazines as potential antiasthma agents. J. Med. Chem., 1985, 28, 1704-1716.
[4]
Wang, L.; Wang, T.; Yang, B.; Chan, Z.; Yang, H. Design, synthesis, and anti-allergic activities of novel (R)(-)-1-[(4-chlorophenyl) phenylmethyl]piperazine derivatives. Med. Chem. Res., 2010, 21, 124-132.
[5]
Sasse, B.C.; Mach, U.R.; Leppaenen, J.; Calmels, T.; Stark, H. Hybrid approach for the design of highly affine and selective dopamine D(3) receptor ligands using privileged scaffolds of biogenic amine GPCR ligands. Bioorg. Med. Chem., 2007, 15, 7258-7273.
[6]
Jung, J.Y.; Jung, S.H.; Koh, H.Y. Asymmetric synthesis of chiral piperazinylpropyl-isoxazoline ligands for dopamine receptors. Eur. J. Chem., 2007, 42, 1044-1048.
[7]
Lee, J.E.; Koh, H.Y.; Seo, S.H.; Beak, Y.Y.; Rhim, H.; Cho, Y.S.; Choo, H.; Pea, A.N. Synthesis and biological evaluation of oxazole derivatives as T-type calcium channel blockers. Bioorg. Med. Chem. Lett., 2010, 20, 4219-4222.
[8]
Borzenko, A.; Pajouhesh, H.; Morrison, J.L.; Tringham, E.; Snutch, T.P.; Schafer, L.L. Modular efficient synthesis of asymmetrically substituted piperazine scaffold as potent calcium channel blockers. Bioorg. Med. Chem. Lett., 2013, 23(11), 3257-3261.
[9]
Meng, T.; Wang, J.; Peng, H.; Fang, G.; Li, M.; Xiong, B.; Xie, X.; Zhang, Y.; Wang, X.; Shen, J. Discovery of benzhydrylpiperazine derivatives as CB1 receptor inverse agonist via privileged structure-based approach. Eur. J. Med. Chem., 2010, 45, 1133-1139.
[10]
Gao, L.; Li, M.; Meng, T.; Peng, H.; Xie, X.; Zhang, Y.; Jin, Y.; Wang, X.; Zou, L.; Shen, J. Asymmetric synthesis and biological evaluation of N-cyclohexyl-4-[1-(2,4-dichlorophenyl)-1-(p-tolyl) methyl]piperazine-1-carboxamide as hCB1 receptors antagonists. Eur. J. Med. Chem., 2011, 46, 5310-5316.
[11]
Kucwaj-Brysz, K.; Warszycki, D.; Podlewska, S.; Witek, J.; Witek, K.; Gonzalez Izquierdo, A.; Satala, G.; Loza, M.I.; Lubelska, A.; Latacz, G.; Bojarski, A.; Castro, M.; Kiec-Kononowicz, K.; Handzlik, J. Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonist. Molecular modeling, synthesis and biological evaluation. Eur. J. Med. Chem., 2016, 112, 258-269.
[12]
Upadhayaya, R.; Vandavasi, J.; Kardile, R.; Lahore, S.; Dixit, S.; Deokar, H.; Shinde, P.; Sarmah, M.; Chattopadhyaya, J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem., 2010, 45, 1854-1867.
[13]
Gan, L.L.; Fang, B.; Zhou, C.H. Synthesis of azole-containing piperazine derivatives and evaluation of their antibacterial, antifungal and cytotoxicity activities. Bull. Korean Chem. Soc., 2010, 31, 3684-3692.
[14]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53, 6477-6489.
[15]
Vitorovic-Todorovic, M.D.; Juranic, I.O.; Mandic, L.M.; Drakulic, B.J. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction field. Bioorg. Med. Chem., 2010, 18, 1181-1193.
[16]
Tilley, J.W.; Levitan, P.; Welton, A.F.; Crowley, H.J. Antagonists of slow-reacting substance of anaphylaxis 1. Pyrido[2,1-b]quinazolinecarboxylic acid derivatives. J. Med. Chem., 1983, 26, 1638-1642.
[17]
Chern, J.H.; Shia, K.S.; Hsu, T.A.; Tai, C.L.; Lee, C.C.; Lee, Y.C.; Chang, C.S.; Tseng, S.N.; Shih, S.R. Design, synthesis, and structure-activity relationships of pyrazolo[3,4-d]pyrimidines: A novel class of potent enterovirus inhibitors. Bioorg. Med. Chem. Lett., 2004, 14, 2519-2525.
[18]
Curreli, F.; Zhang, H.; Zhang, X.; Pyatkin, I.; Victor, Z.; Altieri, A.; Debnath, A.K. Virtual screening based identification of novel small-molecule inhibitors targeted to the HIV-1 capsid. Bioorg. Med. Chem., 2011, 19, 77-90.
[19]
Chamoun-Emanuelli, A.M.; Pecheur, E.I.; Chen, Z. Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res., 2014, 109, 141-148.
[20]
Huang, W.; Liu, M.Z.; Li, Y.; Tan, Y.; Yang, G.F. Design, synthesis and antitumor activity of novel chromone and aurone derivatives. Bioorg. Med. Chem., 2007, 15, 5191-5197.
[21]
Kumar, C.S.A.; Prasad, S.B.B.; Vinaya, K.; Chandrappa, S.; Thimmegowda, N.; Kumar, Y.C.S.; Swarup, S.; Rangappa, K.S. Synthesis and in vitro antiproliferative activity of novel 1-benzhydrylpiperazine derivatives against human cancer cell lines. Eur. J. Med. Chem., 2009, 44, 1223-1229.
[22]
Huang, W.; Ding, Y.; Miao, Y.; Liu, M.Z.; Li, Y.; Yang, G.F. Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem., 2009, 44, 3687-3696.
[23]
Gurdal, E.E.; Yarim, M.; Durmaz, I.; Cetin-Atalay, R. Cytotoxic activities of some novel benzhydrylpiperazine derivatives. Drug Res. (Stuttg.), 2013, 63, 121-128.
[24]
Gurdal, E.E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Synthesis and cytotoxicity studies of novel benzhydrylpiperazine carboxamide and thioamide. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 205-214.
[25]
Gurdal, E.E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Cytotoxic activities of some benzothiazole-piperazine derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 649-654.
[26]
Hamlyn, R.J.; Huckstep, M.R.; Lynch, R.; Stokes, S.; Tickle, D.C.; Patient, L. Azacyclic compounds as inhibitors of sensory neurone specific channels. PCT Int. Appl, 2005. 125 pp, WO2005005392
[27]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1, 1112-1116.