The aim of this article is to get an overview of the metabolism of quinoxaline 1,4-di-N-oxides (QdNOs) used in food animals. The derivatives of QdNOs (carbadox, olaquindox, mequindox, quinocetone, and cyadox) are the potent synthetic antimicrobial agents that are used for improving the feed efficiency and controlling dysentery in food-producing animals. Studies have demonstrated that the toxicity of QdNOs is closely associated with the production of their metabolism, especially with the production of their reduced metabolites. To the best of our knowledge, no one has systematically compiled the metabolism data of QdNOs. Therefore, the metabolism of QdNOs in animals has been discussed in the review for the first time. These drugs undergo extensive metabolism prior to excretion. N-oxide group reduction is the major metabolic pathway of QdNOs. Moreover, the N1- and N4-oxide reductions of QdNOs by different reducing mechanisms are also described. Obvious differences in metabolic pathways for QdNOs were observed owing to the differences on the side chain of these drugs. Therefore, understanding the metabolic pathways of QdNOs in animals will provide the guides for further studies of metabolism and toxicology of these drugs, and will also provide abundant information for the food safety assessment.
Keywords: Metabolism, Carbadox, Olaquindox, Mequindox, Quinocetone, Cyadox.