Emx2 encodes for a transcription factor controlling several aspects of cerebral cortex development. Its overexpression promotes self-renewal of young cortico-cerebral precursors, it promotes neuronal rather than gliogenic fates and it protects neuronal progenitors from cell death. These are all key activities for purposes of gene-promoted brain repair.
Artificial pri-miRNAs targeting non-coding cis-active modules and/or conserved sequences of the Emx2 locus were delivered to embryonic cortico-cerebral precursors, by lentiviral vectors. A subset of these pri-miRNAs upregulated Emx2, possibly stimulating its transcription. That led to enhanced self-renewal, delayed differentiation and reduced death of neuronally committed precursors, resulting in an appreciable expansion of the neuronogenic precursors pool. This method makes Emx2 overexpression for purposes of brain repair a more feasible goal, avoiding the drawbacks of exogenous gene copies introduction.
Interestingly, the two genomic enhancers targeted by these pri-miRNAs were discovered to be naturally transcribed. Their expression profile suggests their possible involvement in regulation of Emx2 transcription.
Keywords: Emx2, cerebral cortex, RNAa, neural stem cell, neuronal progenitor, lentivector