Current Cancer Drug Targets

Author(s): Yiping Zheng, Jianfeng Cai, Qiuhong Ji, Luanmei Liu, Kaijun Liao, Lie Dong, Jie Gao and Yinghui Huang*

DOI: 10.2174/0115680096337237240909101904

DownloadDownload PDF Flyer Cite As
Tumor-Activated Neutrophils Promote Lung Cancer Progression through the IL-8/PD-L1 Pathway

Page: [294 - 305] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Lung cancer remains a major global health threat due to its complex microenvironment, particularly the role of neutrophils, which are crucial for tumor development and immune evasion mechanisms. This study aimed to delve into the impact of lung cancer cell-conditioned media on neutrophil functions and their potential implications for lung cancer progression.

Methods: Employing in vitro experimental models, this study has analyzed the effects of lung cancer cell-conditioned media on neutrophil IL-8 and IFN-γ secretion, apoptosis, PD-L1 expression, and T-cell proliferation by using techniques, such as ELISA, flow cytometry, immunofluorescence, and CFSE proliferation assay. The roles of IL-8/PD-L1 in regulating neutrophil functions were further explored using inhibitors for IL-8 and PD-L1.

Results: Lung cancer cell lines were found to secrete higher levels of IL-8 compared to normal lung epithelial cells. The conditioned media from lung cancer cells significantly reduced apoptosis in neutrophils, increased PD-L1 expression, and suppressed T-cell proliferation and IFN-γ secretion. These effects were partially reversed in the presence of IL-8 inhibitors in Tumor Tissue Culture Supernatants (TTCS), while being further enhanced by IL-8. Both apoptosis and PD-L1 expression in neutrophils demonstrated dose-dependency to TTCS. Additionally, CFSE proliferation assay results further confirmed the inhibitory effect of lung cancer cell-conditioned media on T-- cell proliferation.

Conclusion: This study has revealed lung cancer cell-conditioned media to modulate neutrophil functions through regulating factors, such as IL-8, thereby affecting immune regulation and tumor progression in the lung cancer microenvironment.

Keywords: Lung cancer, neutrophils, IL-8, PD-L1, immune escape, tumor microenvironment.

Graphical Abstract

[1]
Abu Rous F, Singhi EK, Sridhar A, Faisal MS, Desai A. Lung cancer treatment advances in 2022. Cancer Invest 2023; 41(1): 12-24.
[http://dx.doi.org/10.1080/07357907.2022.2119479] [PMID: 36036470]
[2]
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169: 115891.
[http://dx.doi.org/10.1016/j.biopha.2023.115891] [PMID: 37979378]
[3]
Lee E, Kazerooni EA. Lung Cancer Screening. Semin Respir Crit Care Med 2022; 43(6): 839-50.
[http://dx.doi.org/10.1055/s-0042-1757885] [PMID: 36442474]
[4]
Nooreldeen R, Bach H. Current and Future Development in Lung Cancer Diagnosis. Int J Mol Sci 2021; 22(16): 8661.
[http://dx.doi.org/10.3390/ijms22168661] [PMID: 34445366]
[5]
Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet 2021; 398(10299): 535-54.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[6]
Yao J, Novosel M, Bellampalli S, Kapo J, Joseph J, Prsic E. Lung Cancer Supportive Care and Symptom Management. Hematol Oncol Clin North Am 2023; 37(3): 609-22.
[http://dx.doi.org/10.1016/j.hoc.2023.02.011] [PMID: 37024385]
[7]
Jiwnani S, Penumadu P, Ashok A, Pramesh CS. Lung Cancer Management in Low and Middle-Income Countries. Thorac Surg Clin 2022; 32(3): 383-95.
[http://dx.doi.org/10.1016/j.thorsurg.2022.04.005] [PMID: 35961746]
[8]
Petruželka L, Špaček J, Křížová Ĺ. Future of lung cancer treatment. Klin Onkol 2021; 34: 71-81.
[http://dx.doi.org/10.48095/ccko2021S71] [PMID: 34154333]
[9]
Jain D, Roy-Chowdhuri S. Advances in cytology of lung cancer. Semin Diagn Pathol 2021; 38(5): 109-15.
[http://dx.doi.org/10.1053/j.semdp.2021.05.001] [PMID: 34119361]
[10]
Yang H, Liu Y, Chen L, et al. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13(6): 877.
[http://dx.doi.org/10.3390/biom13060877] [PMID: 37371458]
[11]
Lee J, Saxena A, Giaccone G. Advancements in small cell lung cancer. Semin Cancer Biol 2023; 93: 123-8.
[http://dx.doi.org/10.1016/j.semcancer.2023.05.008] [PMID: 37236329]
[12]
Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction — Evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 2021; 18(3): 135-51.
[http://dx.doi.org/10.1038/s41571-020-00432-6] [PMID: 33046839]
[13]
Jha SK, De Rubis G, Devkota SR, et al. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97: 102315.
[http://dx.doi.org/10.1016/j.arr.2024.102315] [PMID: 38679394]
[14]
Frydrychowicz M, Kuszel Ł, Dworacki G, Budna-Tukan J. MicroRNA in lung cancer—A novel potential way for early diagnosis and therapy. J Appl Genet 2023; 64(3): 459-77.
[http://dx.doi.org/10.1007/s13353-023-00750-2] [PMID: 36821071]
[15]
Hu J, Zhang L, Xia H, et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med 2023; 15(1): 14.
[http://dx.doi.org/10.1186/s13073-023-01164-9] [PMID: 36869384]
[16]
Liu W, Powell CA, Wang Q. Tumor microenvironment in lung cancer-derived brain metastasis. Chin Med J (Engl) 2022; 135(15): 1781-91.
[http://dx.doi.org/10.1097/CM9.0000000000002127] [PMID: 35838548]
[17]
Cords L, Engler S, Haberecker M, et al. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 2024; 42(3): 396-412.e5.
[http://dx.doi.org/10.1016/j.ccell.2023.12.021] [PMID: 38242124]
[18]
Cao B, Liu M, Wang L, et al. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nat Commun 2022; 13(1): 6203.
[http://dx.doi.org/10.1038/s41467-022-33968-5] [PMID: 36261437]
[19]
Zhao Y, Guo S, Deng J, et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int J Biol Sci 2022; 18(9): 3845-58.
[http://dx.doi.org/10.7150/ijbs.70958] [PMID: 35813484]
[20]
Zhang J, Song C, Tian Y, Yang X. Single-Cell RNA Sequencing in Lung Cancer: Revealing Phenotype Shaping of Stromal Cells in the Microenvironment. Front Immunol 2022; 12: 802080.
[http://dx.doi.org/10.3389/fimmu.2021.802080] [PMID: 35126365]
[21]
Wang Y, Chen R, Wa Y, et al. Tumor Immune Microenvironment and Immunotherapy in Brain Metastasis From Non-Small Cell Lung Cancer. Front Immunol 2022; 13: 829451.
[http://dx.doi.org/10.3389/fimmu.2022.829451] [PMID: 35251014]
[22]
Xue Q, Wang Y, Zheng Q, et al. Prognostic value of tumor immune microenvironment factors in patients with stage I lung adenocarcinoma. Am J Cancer Res 2023; 13(3): 950-63.
[PMID: 37034213]
[23]
Lin Y, Zhou H, Li S. BTN3A2 Expression Is Connected With Favorable Prognosis and High Infiltrating Immune in Lung Adenocarcinoma. Front Genet 2022; 13: 848476.
[http://dx.doi.org/10.3389/fgene.2022.848476] [PMID: 35873496]
[24]
Stankovic B, Bjørhovde HAK, Skarshaug R, et al. Immune Cell Composition in Human Non-small Cell Lung Cancer. Front Immunol 2019; 9: 3101.
[http://dx.doi.org/10.3389/fimmu.2018.03101] [PMID: 30774636]
[25]
Li T, Qiao T. Unraveling tumor microenvironment of small-cell lung cancer: Implications for immunotherapy. Semin Cancer Biol 2022; 86(Pt 2): 117-25.
[http://dx.doi.org/10.1016/j.semcancer.2022.09.005] [PMID: 36183998]
[26]
Ancey PB, Contat C, Boivin G, et al. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Res 2021; 81(9): 2345-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2870] [PMID: 33753374]
[27]
He XY, Gao Y, Ng D, et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42(3): 474-486.e12.
[http://dx.doi.org/10.1016/j.ccell.2024.01.013] [PMID: 38402610]
[28]
Zhang Q, Abdo R, Iosef C, et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat Commun 2022; 13(1): 5983.
[http://dx.doi.org/10.1038/s41467-022-33365-y] [PMID: 36216799]
[29]
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol 2022; 13: 1016817.
[http://dx.doi.org/10.3389/fimmu.2022.1016817] [PMID: 36341377]
[30]
Ramon-Gil E, Geh D, Leslie J. Harnessing neutrophil plasticity for HCC immunotherapy. Essays Biochem 2023; 67(6): 941-55.
[http://dx.doi.org/10.1042/EBC20220245] [PMID: 37534829]
[31]
Peng H, Wu X, Liu S, et al. Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil. Clin Transl Med 2023; 13(7): e1340.
[http://dx.doi.org/10.1002/ctm2.1340] [PMID: 37491740]
[32]
Chan Y, Tan H, Lu Y, et al. Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B 2023; 13(4): 1554-67.
[http://dx.doi.org/10.1016/j.apsb.2023.01.020] [PMID: 37139434]
[33]
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13: 1093990.
[http://dx.doi.org/10.3389/fimmu.2022.1093990] [PMID: 36776395]
[34]
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol 2021; 12: 688625.
[http://dx.doi.org/10.3389/fphar.2021.688625] [PMID: 34079469]
[35]
Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S. Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol 2021; 12: 785222.
[http://dx.doi.org/10.3389/fimmu.2021.785222] [PMID: 34899751]
[36]
Ushio R, Murakami S, Saito H. Predictive Markers for Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J Clin Med 2022; 11(7): 1855.
[http://dx.doi.org/10.3390/jcm11071855] [PMID: 35407463]
[37]
Gu X, Zhu Y, Su J, et al. Lactate-induced activation of tumor-associated fibroblasts and IL-8-mediated macrophage recruitment promote lung cancer progression. Redox Biol 2024; 74: 103209.
[http://dx.doi.org/10.1016/j.redox.2024.103209] [PMID: 38861833]
[38]
Tao Q, Li X, Zhu T, et al. Lactate Transporter SLC16A3 (MCT4) as an Onco-Immunological Biomarker Associating Tumor Microenvironment and Immune Responses in Lung Cancer. Int J Gen Med 2022; 15: 4465-74.
[http://dx.doi.org/10.2147/IJGM.S353592] [PMID: 35509603]
[39]
Horn LA, Riskin J, Hempel HA, et al. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. J Immunother Cancer 2020; 8(1): e000326.
[http://dx.doi.org/10.1136/jitc-2019-000326] [PMID: 32188703]
[40]
Yuliani FS, Chen JY, Cheng WH, Wen HC, Chen BC, Lin CH. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 2022; 29(1): 95.
[http://dx.doi.org/10.1186/s12929-022-00877-0] [PMID: 36369000]
[41]
Perry JA, Shallberg L, Clark JT, et al. PD-L1–PD-1 interactions limit effector regulatory T cell populations at homeostasis and during infection. Nat Immunol 2022; 23(5): 743-56.
[http://dx.doi.org/10.1038/s41590-022-01170-w] [PMID: 35437326]
[42]
Tichet M, Wullschleger S, Chryplewicz A, et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity 2023; 56(1): 162-179.e6.
[http://dx.doi.org/10.1016/j.immuni.2022.12.006] [PMID: 36630914]
[43]
Huang Q, Wu X, Wang Z, et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 2022; 185(22): 4049-4066.e25.
[http://dx.doi.org/10.1016/j.cell.2022.09.020] [PMID: 36208623]
[44]
Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade. Cancer Immunol Res 2022; 10(2): 146-53.
[http://dx.doi.org/10.1158/2326-6066.CIR-21-0515] [PMID: 34937730]
[45]
Song S, Zhang Y, Duan X, et al. HIF-1α/IL-8 axis in hypoxic macrophages promotes esophageal cancer progression by enhancing PD-L1 expression. Cancer Gene Ther 2023; 30(2): 358-67.
[http://dx.doi.org/10.1038/s41417-022-00551-5] [PMID: 36357565]
[46]
Tanaka I, Dayde D, Tai MC, et al. SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1–Negative Lung Adenocarcinomas. J Natl Cancer Inst 2022; 114(2): 290-301.
[http://dx.doi.org/10.1093/jnci/djab183] [PMID: 34524427]
[47]
Wu Y, Liu Q, Xie Y, et al. MUC16 stimulates neutrophils to an inflammatory and immunosuppressive phenotype in ovarian cancer. J Ovarian Res 2023; 16(1): 181.
[http://dx.doi.org/10.1186/s13048-023-01207-0] [PMID: 37644468]
[48]
Giannetta E, La Salvia A, Rizza L, et al. Are Markers of Systemic Inflammatory Response Useful in the Management of Patients With Neuroendocrine Neoplasms? Front Endocrinol (Lausanne) 2021; 12: 672499.
[http://dx.doi.org/10.3389/fendo.2021.672499] [PMID: 34367064]
[49]
Favaro F, Luciano-Mateo F, Moreno-Caceres J, et al. TRAIL receptors promote constitutive and inducible IL-8 secretion in non-small cell lung carcinoma. Cell Death Dis 2022; 13(12): 1046.
[http://dx.doi.org/10.1038/s41419-022-05495-0] [PMID: 36522309]
[50]
Li X, Chen J, Chen YJ, et al. Dexamethasone and lactoferrin induced PMN-MDSCs relieved inflammatory adverse events of anti-cancer therapy without tumor promotion. Commun Biol 2021; 4(1): 252.
[http://dx.doi.org/10.1038/s42003-021-01769-z] [PMID: 33637832]
[51]
Liu Y, Li Z, Meng Q, et al. Identification of the consistently differential expressed hub mRNAs and proteins in lung adenocarcinoma and construction of the prognostic signature: A multidimensional analysis. Int J Surg 2024; 110(2): 1052-67.
[http://dx.doi.org/10.1097/JS9.0000000000000943] [PMID: 38016140]
[52]
Xiong H, Ye J, Xie K, Hu W, Xu N, Yang H. Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells induced adipocyte atrophy via NF-κB signaling pathway. Lipids Health Dis 2022; 21(1): 147.
[http://dx.doi.org/10.1186/s12944-022-01755-2] [PMID: 36581870]
[53]
Sheng Y, Peng W, Huang Y, et al. Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol 2023; 113(4): 383-99.
[http://dx.doi.org/10.1093/jleuko/qiad004] [PMID: 36801950]
[54]
Minor BMN, LeMoine D, Seger C, et al. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164(6): bqad061.
[http://dx.doi.org/10.1210/endocr/bqad061] [PMID: 37042477]
[55]
Tsilimigras DI, Brodt P, Clavien PA, et al. Liver metastases. Nat Rev Dis Primers 2021; 7(1): 27.
[http://dx.doi.org/10.1038/s41572-021-00261-6] [PMID: 33859205]
[56]
Wang C, Zheng X, Zhang J, et al. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621(7980): 830-9.
[http://dx.doi.org/10.1038/s41586-023-06511-9] [PMID: 37674079]
[57]
Zhong J, Zong S, Wang J, et al. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. Biochim Biophys Acta Mol Cell Res 1870; 119493: 2023.
[PMID: 37201766]
[58]
Hiramatsu S, Tanaka H, Nishimura J, et al. Gastric cancer cells alter the immunosuppressive function of neutrophils. Oncol Rep 2020; 43(1): 251-9.
[PMID: 31746403]
[59]
Roetman JJ, Erwin MM, Rudloff MW, et al. Tumor-Reactive CD8+ T Cells Enter a TCF1+PD-1− Dysfunctional State. Cancer Immunol Res 2023; 11(12): 1630-41.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0939] [PMID: 37844197]
[60]
Li H, Chen J, Li Z, et al. S100A5 Attenuates Efficiency of Anti-PD-L1/PD-1 Immunotherapy by Inhibiting CD8 + T Cell-Mediated Anti-Cancer Immunity in Bladder Carcinoma. Adv Sci (Weinh) 2023; 10(25): 2300110.
[http://dx.doi.org/10.1002/advs.202300110] [PMID: 37414584]
[61]
Cai Z, Chen J, Yu Z, et al. BCAT2 Shapes a Noninflamed Tumor Microenvironment and Induces Resistance to Anti-PD-1/PD-L1 Immunotherapy by Negatively Regulating Proinflammatory Chemokines and Anticancer Immunity. Adv Sci (Weinh) 2023; 10(8): 2207155.
[http://dx.doi.org/10.1002/advs.202207155] [PMID: 36642843]
[62]
Liang Y, Shen J, Lan Q, et al. Blockade of PD-1/PD-L1 increases effector T cells and aggravates murine chronic graft-versus-host disease. Int Immunopharmacol 2022; 110: 109051.
[http://dx.doi.org/10.1016/j.intimp.2022.109051] [PMID: 35850051]
[63]
Zhulai G, Oleinik E. Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy. Scand J Immunol 2022; 95(3): e13129.
[http://dx.doi.org/10.1111/sji.13129] [PMID: 34936125]
[64]
Gulden G, Sert B, Teymur T, et al. CAR-T Cells with Phytohemagglutinin (PHA) Provide Anti-Cancer Capacity with Better Proliferation, Rejuvenated Effector Memory, and Reduced Exhausted T Cell Frequencies. Vaccines (Basel) 2023; 11(2): 313.
[http://dx.doi.org/10.3390/vaccines11020313] [PMID: 36851194]
[65]
Rahimmanesh I, Tavangar M, Zahedi SN, Azizi Y, Khanahmad Shahreza H. Optimization of Culture Media for Ex vivo T-Cell Expansion for Adoptive T-Cell Therapy. Adv Biomed Res 2022; 11(1): 94.
[http://dx.doi.org/10.4103/abr.abr_349_21] [PMID: 36518860]
[66]
Kashef S, Moghtaderi M, Hatami HR, et al. Evaluation of T Cell Proliferation Using CFSE Dilution Assay: A Comparison between Stimulation with PHA and Anti-CD3/Anti-CD28 Coated Beads. Iran J Allergy Asthma Immunol 2022; 21(4): 458-66.
[http://dx.doi.org/10.18502/ijaai.v21i4.10293] [PMID: 36243934]
[67]
Habiballah SB, Whangbo JS, Cardona ID, Platt CD. Spontaneous resolution of severe idiopathic T cell lymphopenia. Clin Immunol 2022; 238: 109014.
[http://dx.doi.org/10.1016/j.clim.2022.109014] [PMID: 35447312]
[68]
Cui Y, Li J, Zhang P, et al. B4GALT1 promotes immune escape by regulating the expression of PD-L1 at multiple levels in lung adenocarcinoma. J Exp Clin Cancer Res 2023; 42(1): 146.
[http://dx.doi.org/10.1186/s13046-023-02711-3] [PMID: 37303063]
[69]
Madeddu C, Donisi C, Liscia N, Lai E, Scartozzi M, Macciò A. EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment. Int J Mol Sci 2022; 23(12): 6489.
[http://dx.doi.org/10.3390/ijms23126489] [PMID: 35742933]
[70]
Vico-Barranco I, Arbulo-Echevarria MM, Serrano-García I, et al. A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling. Cells 2021; 10(2): 343.
[http://dx.doi.org/10.3390/cells10020343] [PMID: 33562083]
[71]
Ahmadi A, Ayyadevara VSSA, Baudry J, Roh KH. Calcium signaling on Jurkat T cells induced by microbeads coated with novel peptide ligands specific to human CD3ε. J Mater Chem B Mater Biol Med 2021; 9(6): 1661-75.
[http://dx.doi.org/10.1039/D0TB02235G] [PMID: 33481966]
[72]
Carrasco-Padilla C, Aguilar-Sopeña O, Gómez-Morón A, et al. T cell activation and effector function in the human Jurkat T cell model. Methods Cell Biol 2023; 178: 25-41.
[http://dx.doi.org/10.1016/bs.mcb.2022.09.012] [PMID: 37516527]
[73]
Jung D, Shin S, Kang SM, et al. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles 2022; 11(12): 12287.
[http://dx.doi.org/10.1002/jev2.12287] [PMID: 36447429]
[74]
Geiger KM, Manoharan M, Coombs R, et al. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42(4): 112317.
[http://dx.doi.org/10.1016/j.celrep.2023.112317] [PMID: 36995940]
[75]
Zagorulya M, Yim L, Morgan DM, et al. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer. Immunity 2023; 56(2): 386-405.e10.
[http://dx.doi.org/10.1016/j.immuni.2023.01.010] [PMID: 36736322]
[76]
Cui Z, Ruan Z, Zeng J, et al. Lung-specific exosomes for co-delivery of CD47 blockade and cisplatin for the treatment of non-small cell lung cancer. Thorac Cancer 2022; 13(19): 2723-31.
[http://dx.doi.org/10.1111/1759-7714.14606] [PMID: 36054073]
[77]
Cheng B, Ding K, Chen P, et al. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer. Cancer Commun (Lond) 2022; 42(1): 17-36.
[http://dx.doi.org/10.1002/cac2.12244] [PMID: 34981670]
[78]
Peng P, Lou Y, Wang S, et al. Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy. J Immunother Cancer 2022; 10(12): e005769.
[http://dx.doi.org/10.1136/jitc-2022-005769] [PMID: 36521929]