Current Cancer Drug Targets

Author(s): Rangaraj Kaviyaprabha, Thandaserry Vasudevan Miji, Rangaraj Suseela, Sridhar Muthusami, Subramanian Thangaleela, Hesham S. Almoallim, Priyadarshini Sivakumar and Muruganantham Bharathi*

DOI: 10.2174/0115680096321287240826065718

DownloadDownload PDF Flyer Cite As
Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression

Page: [183 - 203] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Introduction: This study delved to understand the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant.

Methods: Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBase, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients’ samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200c-3p and KDR.

Results: The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR expression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could alter the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC.

Discussion: Upon examining the outcome, it became evident that miR-200c-3p was significantly downregulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsamiR- 200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progression.

Conclusion: The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This finding holds promise for future research endeavors. Concurrent administration of the FDA-approved 5- fluorouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to enhance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treatment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying preventative mechanisms.

Keywords: KDR, miRNA, computational kidney, renal cell carcinoma, tumor grade potential regulator, miR-200c-3p.

Graphical Abstract

[1]
Harrison, H.; Thompson, R.E.; Lin, Z.; Rossi, S.H.; Stewart, G.D.; Griffin, S.J.; Usher-Smith, J.A. Risk prediction models for kidney cancer: A systematic review. Eur. Urol. Focus, 2021, 7(6), 1380-1390.
[http://dx.doi.org/10.1016/j.euf.2020.06.024] [PMID: 32680829]
[2]
Li, Z.; Xu, H.; Yu, L.; Wang, J.; Meng, Q.; Mei, H.; Cai, Z.; Chen, W.; Huang, W. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin. Transl. Med., 2022, 12(7), e970.
[http://dx.doi.org/10.1002/ctm2.970 ] [PMID: 35802820]
[3]
Lee, K.H.; Kim, B.C.; Jeong, S.H.; Jeong, C.W.; Ku, J.H.; Kwak, C.; Kim, H.H. Histone demethylase LSD1 regulates kidney cancer progression by modulating androgen receptor activity. Int. J. Mol. Sci., 2020, 21(17), 6089.
[http://dx.doi.org/10.3390/ijms21176089] [PMID: 32847068]
[4]
Brown, J.E.; Royle, K.L.; Gregory, W.; Ralph, C.; Maraveyas, A.; Din, O.; Eisen, T.; Nathan, P.; Powles, T.; Griffiths, R.; Jones, R.; Vasudev, N.; Wheater, M.; Hamid, A.; Waddell, T.; McMenemin, R.; Patel, P.; Larkin, J.; Faust, G.; Martin, A.; Swain, J.; Bestall, J.; McCabe, C.; Meads, D.; Goh, V.; Min Wah, T.; Brown, J.; Hewison, J.; Selby, P.; Collinson, F.; Carser, J.; Srinivasan, G.; Thistlewaite, F.; Azzabi, A.; Beresford, M.; Farrugia, D.; Decatris, M.; Thomas, C.; Gale, J.; McAleer, J.; Clayton, A.; Boleti, E.; Geldart, T.; Sundar, S.; Lester, J.; Palaniappan, N.; Hingorani, M.; Rehman, K.; Khan, M.; Sarwar, N.; Graham, J.; Thomson, A.; Srihari, N.; Sheehan, D.; Srinivasan, R.; Khan, O.; Jane Worlding, A.S.; Boussios, S.; Stuart, N.; MacDonald-Smith, C.; Danwata, F.; McLaren, D.; Sundaramurthy, A.; Lydon, A.; Beesley, S.; Lees, K.; Varughese, M.; Gray, E.; Scott, A.; Baxter, M.; Mullard, A.; Innominato, P.; Kapur, G.; Kumar, A.; Charnley, N.; Manetta, C.; Chakraborti, P.; Das, P.; Rudman, S.; Taylor, H.; Mikropoulos, C.; Highley, M.; Muthukumar, D.; Zarkar, A.; Vergis, R.; Sriprasad, S.; Brulinski, P.; Clarke, A.; Osbourne, R.; Harvey, M.; Dega, R.; Sparrow, G.; Barthakur, U.; Beaumont, E.; Manetta, C.; Michael, A.; Porfiri, E.; Azam, F.; Kodavtiganti, R. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): An open-label, non-inferiority, randomised, controlled, phase 2/3 trial. Lancet Oncol., 2023, 24(3), 213-227.
[http://dx.doi.org/10.1016/S1470-2045(22)00793-8 ] [PMID: 36796394]
[5]
Mysliwiec, P.; Pawlak, K.; Bandurski, R.; Kedra, B. Soluble angiogenesis markers in gastric tumor patients. Folia Histochem. Cytobiol., 2009, 47(1), 81-86.
[http://dx.doi.org/10.2478/v10042-009-0004-4] [PMID: 19419943]
[6]
Tang, R.; Chai, W.M.; Yang, G.Y.; Xie, H.; Chen, K.M. X-ray phase contrast imaging of cell isolation with super-paramagnetic microbeads. PLoS One, 2012, 7(9), e45597.
[http://dx.doi.org/10.1371/journal.pone.0045597] [PMID: 23029126]
[7]
Lou, Y.; Qiu, W.; Wu, Z.; Wang, Q.; Qiu, Y.; Zeng, S. Mass spectral analysis of the multikinase inhibitor BZG and its metabolites and analysis of their binding to vascular endothelial growth factor receptor-2. Oncotarget, 2017, 8(18), 29951-29962.
[http://dx.doi.org/10.18632/oncotarget.16264] [PMID: 28415783]
[8]
Bernatchez, P.N.; Allen, B.G.; Gélinas, D.S.; Guillemette, G.; Sirois, M.G. Regulation of VEGF-induced endothelial cell PAF synthesis: Role of p42/44 MAPK, p38 MAPK and PI3K pathways. Br. J. Pharmacol., 2001, 134(6), 1253-1262.
[http://dx.doi.org/10.1038/sj.bjp.0704367] [PMID: 11704645]
[9]
Chuai, Y.; Rizzuto, I.; Zhang, X.; Li, Y.; Dai, G.; Otter, S.J.; Bharathan, R.; Stewart, A.; Wang, A. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Libr., 2021, 2021(3), CD013348.
[http://dx.doi.org/10.1002/14651858.CD013348.pub2] [PMID: 33661538]
[10]
Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 103-119.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[11]
Fontanella, C.; Ongaro, E.; Bolzonello, S.; Guardascione, M.; Fasola, G.; Aprile, G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann. Transl. Med., 2014, 2(12), 123.
[PMID: 25568876]
[12]
Genet, G.; Boyé, K.; Mathivet, T.; Ola, R.; Zhang, F.; Dubrac, A.; Li, J.; Genet, N.; Henrique Geraldo, L.; Benedetti, L.; Künzel, S.; Pibouin-Fragner, L.; Thomas, J.L.; Eichmann, A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat. Commun., 2019, 10(1), 2350.
[http://dx.doi.org/10.1038/s41467-019-10359-x] [PMID: 31138815]
[13]
Chakraborty, S.; Balan, M.; Sabarwal, A.; Choueiri, T.K.; Pal, S. Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188559.
[http://dx.doi.org/10.1016/j.bbcan.2021.188559] [PMID: 33965513]
[14]
De Caterina, R.; Renda, G.; Sangiuolo, R.; Attena, E.; Di Lecce, L.; Romeo, F. Management of thromboembolic risk in patients with atrial fibrillation in Italy: Eseline data from the PREFER in AF European Registry. G. Ital. Cardiol. (Rome), 2014, 15(2), 99-109.
[http://dx.doi.org/10.1714/1424.15779]
[15]
Saes, L.; Eskens, F.A.L.M. Tivozanib: A new treatment option for renal cell carcinoma. Drugs Today (Barc), 2017, 53(11), 609-618.
[http://dx.doi.org/10.1358/dot.2017.53.11.2724804] [PMID: 29451277]
[16]
Chawla, P.A.; Passi, I.; Billowria, K.; Kumar, B. Tivozanib: A new hope for treating renal cell carcinoma. Anticancer. Agents Med. Chem., 2023, 23(5), 562-570.
[http://dx.doi.org/10.2174/1871520622666220617103126] [PMID: 35718972]
[17]
Millet-Boureima, C.; He, S.; Le, T.B.U.; Gamberi, C. Modeling neoplastic growth in renal cell carcinoma and polycystic kidney disease. Int. J. Mol. Sci., 2021, 22(8), 3918.
[http://dx.doi.org/10.3390/ijms22083918] [PMID: 33920158]
[18]
Zhang, L.; Cao, H.; Gu, G.; Hou, D.; You, Y.; Li, X.; Chen, Y.; Jiao, G. Exosomal MiR-199a-5p Inhibits tumorigenesis and angiogenesis by targeting VEGFA in osteosarcoma. Front. Oncol., 2022, 12, 884559.
[http://dx.doi.org/10.3389/fonc.2022.884559] [PMID: 35651811]
[19]
Boussios, S.; Devo, P.; Goodall, I.C.A.; Sirlantzis, K.; Ghose, A.; Shinde, S.D.; Papadopoulos, V.; Sanchez, E.; Rassy, E.; Ovsepian, S.V. Exosomes in the diagnosis and treatment of renal cell cancer. Int. J. Mol. Sci., 2023, 24(18), 14356.
[http://dx.doi.org/10.3390/ijms241814356] [PMID: 37762660]
[20]
Anand, S.; Cheresh, D.A. MicroRNA-mediated regulation of the angiogenic switch. Curr. Opin. Hematol., 2011, 18(3), 171-176.
[http://dx.doi.org/10.1097/MOH.0b013e328345a180] [PMID: 21423013]
[21]
Lin, L.; Hu, X.; Lu, L.; Dai, J.; Lin, N.; Wang, R.; Xie, Z.; Chen, X. MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations. BMC Cardiovasc. Disord., 2022, 22(1), 278.
[http://dx.doi.org/10.1186/s12872-022-02714-6] [PMID: 35717150]
[22]
Li, M.; Li, J.; Liu, L.; Li, W.; Yang, Y.; Yuan, J. MicroRNA in human glioma. Cancers (Basel), 2013, 5(4), 1306-1331.
[http://dx.doi.org/10.3390/cancers5041306] [PMID: 24202447]
[23]
Lou, W.; Liu, J.; Gao, Y.; Zhong, G.; Chen, D.; Shen, J.; Bao, C.; Xu, L.; Pan, J.; Cheng, J.; Ding, B.; Fan, W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget, 2017, 8(70), 115787-115802.
[http://dx.doi.org/10.18632/oncotarget.23115 ] [PMID: 29383201]
[24]
Wang, Y.; Wang, L.; Chen, C.; Chu, X. New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol. Cancer, 2018, 17(1), 22.
[http://dx.doi.org/10.1186/s12943-018-0766-4] [PMID: 29415727]
[25]
Savaliya, M.; Surati, D.; Surati, R.; Padmani, S.; Boussios, S. Posterior reversible encephalopathy syndrome after pazopanib therapy. Diseases, 2023, 11(2), 76.
[http://dx.doi.org/10.3390/diseases11020076] [PMID: 37366864]
[26]
Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.
[http://dx.doi.org/10.1016/j.neo.2022.01.001] [PMID: 35078134]
[27]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[28]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[29]
Hauschild, A.C.; Pastrello, C.; Ekaputeri, G.K.A.; Bethune-Waddell, D.; Abovsky, M.; Ahmed, Z.; Kotlyar, M.; Lu, R.; Jurisica, I. MirDIP 5.2: Tissue context annotation and novel microRNA curation. Nucleic Acids Res., 2023, 51(D1), D217-D225.
[http://dx.doi.org/10.1093/nar/gkac1070] [PMID: 36453996]
[30]
Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res., 2020, 48(W1), W244-W251.
[http://dx.doi.org/10.1093/nar/gkaa467] [PMID: 32484539]
[31]
Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; Keller, A. miRTargetLink 2.0—interactive miRNA target gene and target pathway networks. Nucleic Acids Res., 2021, 49(W1), W409-W416.
[http://dx.doi.org/10.1093/nar/gkab297] [PMID: 34009375]
[32]
Aparicio-Puerta, E.; Hirsch, P.; Schmartz, G.P.; Kern, F.; Fehlmann, T.; Keller, A. miEAA 2023: Updates, new functional microRNA sets and improved enrichment visualizations. Nucleic Acids Res., 2023, 51(W1), W319-W325.
[http://dx.doi.org/10.1093/nar/gkad392] [PMID: 37177999]
[33]
Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics, 2019, 20(1), 545.
[http://dx.doi.org/10.1186/s12859-019-3105-x] [PMID: 31684860]
[34]
Li, R.; Qu, H.; Wang, S.; Chater, J.M.; Wang, X.; Cui, Y.; Yu, L.; Zhou, R.; Jia, Q.; Traband, R.; Wang, M.; Xie, W.; Yuan, D.; Zhu, J.; Zhong, W.D.; Jia, Z. CancerMIRNome: An interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res., 2022, 50(D1), D1139-D1146.
[http://dx.doi.org/10.1093/nar/gkab784] [PMID: 34500460]
[35]
Giacomelli, C.; Jung, J.; Wachter, A.; Ibing, S.; Will, R.; Uhlmann, S.; Mannsperger, H.; Sahin, Ö.; Yarden, Y.; Beißbarth, T.; Korf, U.; Körner, C.; Wiemann, S. Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits. BMC Cancer, 2021, 21(1), 1296.
[http://dx.doi.org/10.1186/s12885-021-08955-6] [PMID: 34863149]
[36]
McGeary, SE.; Lin, KS.; Shi, CY.; Pham, TM.; Bisaria, N.; Kelley, GM.; Bartel, DP. The biochemical basis of microRNA targeting efficacy. Science, 2019, 366, eaav1741.
[http://dx.doi.org/10.1126/science.aav174]
[37]
Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res., 2003, 31(13), 3429-3431.
[http://dx.doi.org/10.1093/nar/gkg599] [PMID: 12824340]
[38]
Biesiada, M.; Purzycka, K.J.; Szachniuk, M.; Blazewicz, J.; Adamiak, R.W. Automated RNA 3D structure prediction with RNA composer. Methods Mol. Biol., 2016, 1490, 199-215.
[http://dx.doi.org/10.1007/978-1-4939-6433-8_13] [PMID: 27665601]
[39]
Iyer, S.; Scotney, P.D.; Nash, A.D.; Ravi Acharya, K. Crystal structure of human vascular endothelial growth factor-B: Identification of amino acids important for receptor binding. J. Mol. Biol., 2006, 359(1), 76-85.
[http://dx.doi.org/10.1016/j.jmb.2006.03.002] [PMID: 16616187]
[40]
Yu, F.; Li, B.; Sun, J.; Qi, J.; De Wilde, R.L.; Torres-de la Roche, L.A.; Li, C.; Ahmad, S.; Shi, W.; Li, X.; Chen, Z. PSRR: A web server for predicting the regulation of miRNAs expression by small molecules. Front. Mol. Biosci., 2022, 9, 817294.
[http://dx.doi.org/10.3389/fmolb.2022.817294] [PMID: 35386297]
[41]
Fuchs, B.; Birt, A.; Moellhoff, N.; Kuhlmann, C.; Giunta, R.; Wiggenhauser, P.S. The use of commercial fibrin glue in dermal replacement material reduces angiogenic and lymphangiogenic gene and protein expression in vitro. J. Biomater. Appl., 2023, 37(10), 1858-1873.
[http://dx.doi.org/10.1177/08853282231171681] [PMID: 37082911]
[42]
Thalgott, J.H.; Dos-Santos-Luis, D.; Hosman, A.E.; Martin, S.; Lamandé, N.; Bracquart, D.; Srun, S.; Galaris, G.; de Boer, H.C.; Tual-Chalot, S.; Kroon, S.; Arthur, H.M.; Cao, Y.; Snijder, R.J.; Disch, F.; Mager, J.J.; Rabelink, T.J.; Mummery, C.L.; Raymond, K.; Lebrin, F. Decreased expression of vascular endothelial growth factor receptor 1 contributes to the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Circulation, 2018, 138(23), 2698-2712.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033062] [PMID: 30571259]
[43]
Krispin, S.; Stratman, A.N.; Melick, C.H.; Stan, R.V.; Malinverno, M.; Gleklen, J.; Castranova, D.; Dejana, E.; Weinstein, B.M. Growth differentiation factor 6 promotes vascular stability by restraining vascular endothelial growth factor signaling. Arterioscler. Thromb. Vasc. Biol., 2018, 38(2), 353-362.
[http://dx.doi.org/10.1161/ATVBAHA.117.309571 ] [PMID: 29284606]
[44]
Montemagno, C.; Pagès, G. Resistance to anti-angiogenic therapies: A mechanism depending on the time of exposure to the drugs. Front. Cell Dev. Biol., 2020, 8, 584.
[http://dx.doi.org/10.3389/fcell.2020.00584 ] [PMID: 32775327]
[45]
Gehmeyr, J.; Maghnouj, A.; Tjaden, J.; Vorgerd, M.; Hahn, S.; Matschke, V.; Theis, V.; Theiss, C. Disabling VEGF-response of purkinje cells by downregulation of KDR via miRNA-204-5p. Int. J. Mol. Sci., 2021, 22(4), 2173.
[http://dx.doi.org/10.3390/ijms22042173] [PMID: 33671638]
[46]
Niu, G.; Chen, X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets, 2010, 11(8), 1000-1017.
[http://dx.doi.org/10.2174/138945010791591395] [PMID: 20426765]
[47]
Mohammad Rezaei, F.; Hashemzadeh, S.; Ravanbakhsh Gavgani, R.; Hosseinpour Feizi, M.; Pouladi, N.; Samadi Kafil, H.; Rostamizadeh, L.; Kholghi Oskooei, V.; Taheri, M.; Sakhinia, E. Dysregulated KDR and FLT1 gene expression in colorectal cancer patients. Rep. Biochem. Mol. Biol., 2019, 8(3), 244-252.
[PMID: 32274396]
[48]
Huang, M.; Zhang, T.; Yao, Z.Y.; Xing, C.; Wu, Q.; Liu, Y.W.; Xing, X.L. MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma. BMC Med. Genomics, 2021, 14(1), 72.
[http://dx.doi.org/10.1186/s12920-021-00932-z] [PMID: 33750388]
[49]
Zhang, Y.; Ma, S.; Zhang, J.; Lou, L.; Liu, W.; Gao, C.; Miao, L.; Sun, F.; Chen, W.; Cao, X.; Wei, J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci. Rep., 2023, 13(1), 5935.
[http://dx.doi.org/10.1038/s41598-022-21447-2] [PMID: 37045834]
[50]
Deng, L.; Wang, P.; Qu, Z.; Liu, N. The construction and analysis of cerna network and immune infiltration in kidney renal clear cell carcinoma. Front. Genet., 2021, 12, 667610.
[http://dx.doi.org/10.3389/fgene.2021.667610] [PMID: 34567057]
[51]
Yamada, Y.; Arai, T.; Kojima, S.; Sugawara, S.; Kato, M.; Okato, A.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Anti-tumor roles of both strands of the miR-455 duplex: Their targets SKA1 and SKA3 are involved in the pathogenesis of renal cell carcinoma. Oncotarget, 2018, 9(42), 26638-26658.
[http://dx.doi.org/10.18632/oncotarget.25410] [PMID: 29928475]
[52]
Lavoro, A.; Falzone, L.; Tomasello, B.; Conti, G.N.; Libra, M.; Candido, S. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front. Pharmacol., 2023, 14, 1191262.
[http://dx.doi.org/10.3389/fphar.2023.1191262] [PMID: 37397501]
[53]
Franczyk, B.; Gluba-Brzózka, A.; Olszewski, R.; Parolczyk, M. Rysz-Górzyńska, M.; Rysz, J. miRNA biomarkers in renal disease. Int. Urol. Nephrol., 2022, 54(3), 575-588.
[http://dx.doi.org/10.1007/s11255-021-02922-7] [PMID: 34228259]
[54]
Vilming Elgaaen, B.; Olstad, O.K.; Haug, K.B.F.; Brusletto, B.; Sandvik, L.; Staff, A.C.; Gautvik, K.M.; Davidson, B. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer, 2014, 14(1), 80.
[http://dx.doi.org/10.1186/1471-2407-14-80] [PMID: 24512620]
[55]
Chang, J.T.H.; Wang, F.; Chapin, W.; Huang, R.S. Identification of microRNAs as breast cancer prognosis markers through the cancer genome atlas. PLoS One, 2016, 11(12), e0168284.
[http://dx.doi.org/10.1371/journal.pone.0168284] [PMID: 27959953]
[56]
Wang, Y.; Lu, K.; Li, W.; Wang, Z.; Ding, J.; Zhu, Z.; Li, Z. MiR-200c-3p aggravates gastric cell carcinoma via KLF6. Genes Genomics, 2021, 43(11), 1307-1316.
[http://dx.doi.org/10.1007/s13258-021-01160-6] [PMID: 34524611]
[57]
Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells, 2020, 9(2), 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[58]
Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622.
[http://dx.doi.org/10.1038/aps.2017.5] [PMID: 28344323]
[59]
Wang, Q.; Wu, G.; Che, X.; Li, Q.; Zhang, Z.; Tang, Q. Sorafenib induces renal cell carcinoma apoptosis via upregulating activating transcription factor 4. Pharmazie, 2018, 73(3), 156-160.
[http://dx.doi.org/10.1691/ph.2018.7855] [PMID: 29544563]
[60]
Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221.
[http://dx.doi.org/10.1111/bcpt.12365] [PMID: 25495944]
[61]
He, Y.; Luo, Y.; Huang, L.; Zhang, D.; Wang, X.; Ji, J.; Liang, S. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol. Res., 2021, 170, 105732.
[http://dx.doi.org/10.1016/j.phrs.2021.105732 ] [PMID: 34139345]
[62]
Tamura, R.; Tanaka, T.; Akasaki, Y.; Murayama, Y.; Yoshida, K.; Sasaki, H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications. Med. Oncol., 2020, 37(1), 2.
[http://dx.doi.org/10.1007/s12032-019-1329-2] [PMID: 31713115]
[63]
Schneider, S.; Peltier, A.; Gras, A.; Arendt, V.; Karasi-Omes, C.; Mujawamariwa, A.; Ndimubanzi, P.C.; Ndayisaba, G.; Wennig, R. Efavirenz in human breast milk, mothers’, and newborns’ plasma. J. Acquir. Immune Defic. Syndr., 2008, 48(4), 450-454.
[http://dx.doi.org/10.1097/QAI.0b013e31817bbc21 ] [PMID: 18614925]
[64]
Hecht, M.; Harrer, T.; Körber, V.; Sarpong, E.O.; Moser, F.; Fiebig, N.; Schwegler, M.; Stürzl, M.; Fietkau, R.; Distel, L.V. Cytotoxic effect of Efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation. Oncol. Lett., 2018, 15(2), 1728-1736.
[http://dx.doi.org/10.3892/ol.2017.7523] [PMID: 29434868]
[65]
Alesini, D.; Mosillo, C.; Naso, G.; Cortesi, E.; Iacovelli, R. Clinical experience with everolimus in the second-line treatment of advanced renal cell carcinoma. Ther. Adv. Urol., 2015, 7(5), 286-294.
[http://dx.doi.org/10.1177/1756287215591764] [PMID: 26425143]
[66]
Aweys, H.; Lewis, D.; Sheriff, M.; Rabbani, R.D.; Lapitan, P.; Sanchez, E.; Papadopoulos, V.; Ghose, A.; Boussios, S. Renal cell cancer – Insights in drug resistance mechanisms. Anticancer Res., 2023, 43(11), 4781-4792.
[http://dx.doi.org/10.21873/anticanres.16675 ] [PMID: 37909991]