Current Cancer Drug Targets

Author(s): Lu Dong, Sifan Liu, Wenjing Sun, Siying Liu, Nan Zhang* and Shutian Zhang*

DOI: 10.2174/0115680096337375240801080008

DownloadDownload PDF Flyer Cite As
Mitochondrial Deoxyguanosine Kinase Induces 5-Fluorouracil Chemotherapy Sensitivity through Autophagy

Page: [306 - 316] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aims: The purpose of this study was to investigate the role of DGUOK in the progression of colorectal cancer (CRC) and its impact on the sensitivity of CRC cells to 5-FU treatment.

Methods: We conducted bioinformatics analysis and qRT-PCR to evaluate DGUOK expression in CRC tissues/cells. Cell viability of CRC cells treated with 5-FU was assessed using CCK-8 and colony formation assays. Autophagy levels were determined through immunofluorescence assays and Western blot analysis. Additionally, the influence of p-p38 on autophagy was investigated via Western blotting. A rescue assay was performed to confirm whether DGUOK/p38 affects 5-FU sensitivity in CRC cells through autophagy.

Results: Our findings indicate that DGUOK is upregulated in CRC tissues compared to normal tissues, correlating with increased cell proliferation and migration. Functionally, inhibition of DGUOK enhances autophagy, thereby decreasing the sensitivity of CRC cells to 5-FU. This effect is partly mediated by DGUOK's impact on the mitogen-activated protein kinase (MAPK) pathway, specifically promoting the phosphorylation of p38 MAPK, a crucial regulator in autophagy pathways.

Conclusion: These results suggest that DGUOK could serve as a novel marker for predicting the efficacy of 5-FU in CRC treatment.

Keywords: Colorectal cancer, deoxyguanosine kinase, autophagy, 5-fluorouracil, p38 MAPK, chemotherapy sensitivity.

Graphical Abstract

[1]
Housini M, Dariya B, Ahmed N, et al. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892: 147857.
[http://dx.doi.org/10.1016/j.gene.2023.147857] [PMID: 37783294]
[2]
Tsalikidis C, Mitsala A, Mentonis VI, et al. Predictive Factors for Anastomotic Leakage Following Colorectal Cancer Surgery: Where Are We and Where Are We Going? Curr Oncol 2023; 30(3): 3111-37.
[http://dx.doi.org/10.3390/curroncol30030236] [PMID: 36975449]
[3]
Brandi G, Ricci AD, Rizzo A, et al. Is post‐transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun 2020; 40(9): 461-4.
[http://dx.doi.org/10.1002/cac2.12072] [PMID: 32762027]
[4]
Zattoni D, Christoforidis D. How best to palliate and treat emergency conditions in geriatric patients with colorectal cancer. Eur J Surg Oncol 2020; 46(3): 369-78.
[http://dx.doi.org/10.1016/j.ejso.2019.12.020] [PMID: 31973923]
[5]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Sobral D, Martins M, Kaplan S, et al. Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol 2022; 5(1): 937.
[http://dx.doi.org/10.1038/s42003-022-03884-x] [PMID: 36085309]
[7]
Vitale E, Rizzo A, Santa K, Jirillo E. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review. Biology 2024; 13(5): 352.
[http://dx.doi.org/10.3390/biology13050352] [PMID: 38785834]
[8]
Jiang T, Xing L, Zhao L, Ye Z, Yu D, Lin S. Comprehensive analysis of m6A related gene mutation characteristics and prognosis in colorectal cancer. BMC Med Genomics 2023; 16(1): 105.
[http://dx.doi.org/10.1186/s12920-023-01509-8] [PMID: 37194014]
[9]
Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif 2020; 53(10): e12900.
[http://dx.doi.org/10.1111/cpr.12900] [PMID: 32914514]
[10]
Ruan J, Zhang P, Zhang Q, et al. Colorectal cancer inhibitory properties of polysaccharides and their molecular mechanisms: A review. Int J Biol Macromol 2023; 238: 124165.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124165] [PMID: 36963537]
[11]
Vanden Avond MA, Meng H, Beatka MJ, et al. The nucleotide prodrug CERC ‐913 improves MTDNA content in primary hepatocytes from DGUOK‐DEFICIENT rats. J Inherit Metab Dis 2021; 44(2): 492-501.
[http://dx.doi.org/10.1002/jimd.12354] [PMID: 33368311]
[12]
Munro B, Horvath R, Müller JS. Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok −/− zebrafish. Hum Mol Genet 2019; 28(5): 796-803.
[http://dx.doi.org/10.1093/hmg/ddy389] [PMID: 30428046]
[13]
Gao Y, Dong R, Yan J, et al. Mitochondrial deoxyguanosine kinase is required for female fertility in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56(3): 427-39.
[http://dx.doi.org/10.3724/abbs.2024003] [PMID: 38327186]
[14]
Lin S, Huang C, Sun J, et al. The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma. EMBO Mol Med 2019; 11(12): e10849.
[http://dx.doi.org/10.15252/emmm.201910849] [PMID: 31633874]
[15]
Zhu C, Johansson M, Permert J, Karlsson A. Enhanced cytotoxicity of nucleoside analogs by overexpression of mitochondrial deoxyguanosine kinase in cancer cell lines. J Biol Chem 1998; 273(24): 14707-11.
[http://dx.doi.org/10.1074/jbc.273.24.14707] [PMID: 9614068]
[16]
Yang Z, Wu G, Zhang X, et al. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer. Front Immunol 2022; 13: 1001444.
[http://dx.doi.org/10.3389/fimmu.2022.1001444] [PMID: 36159842]
[17]
Rizzo A, Mollica V, Tateo V, et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study. Cancer Immunol Immunother 2023; 72(6): 1381-94.
[http://dx.doi.org/10.1007/s00262-023-03366-x] [PMID: 36695827]
[18]
Fabregas JC, Ramnaraign B, George TJ. Clinical Updates for Colon Cancer Care in 2022. Clin Colorectal Cancer 2022; 21(3): 198-203.
[http://dx.doi.org/10.1016/j.clcc.2022.05.006] [PMID: 35729033]
[19]
Xu R, Zhou B, Fung PC, Li X. Recent advances in the treatment of colon cancer. Histol Histopathol 2006; 21(8): 867-72.
[http://dx.doi.org/10.14670/hh-21.867] [PMID: 16691539]
[20]
Peters GJ, van der Wilt CL, van Triest B, et al. Thymidylate synthase and drug resistance. Eur J Cancer 1995; 31(7-8): 1299-305.
[http://dx.doi.org/10.1016/0959-8049(95)00172-F] [PMID: 7577040]
[21]
Ijichi K, Adachi M, Ogawa T, Hasegawa Y, Murakami S. Cell-cycle distribution and Thymidilate Synthatase (TS) expression correlate with 5-FU resistance in head and neck carcinoma cells. Anticancer Res 2014; 34(6): 2907-11.
[PMID: 24922653]
[22]
Xie P, Mo JL, Liu JH, et al. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol 2020; 43(6): 989-1001.
[http://dx.doi.org/10.1007/s13402-020-00529-1] [PMID: 32474853]
[23]
Mafi A, Rezaee M, Hedayati N, et al. Melatonin and 5-fluorouracil combination chemotherapy: opportunities and efficacy in cancer therapy. Cell Commun Signal 2023; 21(1): 33.
[http://dx.doi.org/10.1186/s12964-023-01047-x] [PMID: 36759799]
[24]
Shakibaei M, Buhrmann C, Kraehe P, Shayan P, Lueders C, Goel A. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One 2014; 9(1): e85397.
[http://dx.doi.org/10.1371/journal.pone.0085397] [PMID: 24404205]
[25]
Touil Y, Igoudjil W, Corvaisier M, et al. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res 2014; 20(4): 837-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1854] [PMID: 24323901]
[26]
Rizzo A, Nannini M, Novelli M, Dalia Ricci A, Scioscio VD, Pantaleo MA. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12.
[http://dx.doi.org/10.1177/1758835920936932] [PMID: 32684988]
[27]
Luo Y, Zheng S, Wu Q, et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy 2021; 17(12): 4083-101.
[http://dx.doi.org/10.1080/15548627.2021.1901204] [PMID: 33764843]
[28]
Ren J, Hu Z, Niu G, et al. Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR. FASEB J 2023; 37(3): e22790.
[http://dx.doi.org/10.1096/fj.202200400RR] [PMID: 36786694]
[29]
Ge J, Chen Z, Huang J, et al. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer. PLoS One 2014; 9(10): e110293.
[http://dx.doi.org/10.1371/journal.pone.0110293] [PMID: 25329677]
[30]
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2020; 206: 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[31]
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40(6): 516-43.
[http://dx.doi.org/10.1080/07357907.2022.2055050] [PMID: 35320055]
[32]
El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 2013; 10(2): 186-98.
[http://dx.doi.org/10.1007/s13311-013-0177-6] [PMID: 23385875]
[33]
Mandel H, Szargel R, Labay V, et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 2001; 29(3): 337-41.
[http://dx.doi.org/10.1038/ng746] [PMID: 11687800]
[34]
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. Naunyn Schmiedebergs Arch Pharmacol 2024.
[http://dx.doi.org/10.1007/s00210-024-03189-2] [PMID: 38878089]
[35]
Zheng Y, Wu J, Chen H, et al. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer. Cancer Biol Ther 2023; 24(1): 2226353.
[http://dx.doi.org/10.1080/15384047.2023.2226353] [PMID: 37431852]
[36]
Intuyod K, Saavedra-García P, Zona S, et al. RETRACTED ARTICLE: FOXM1 modulates 5-fluorouracil sensitivity in cholangiocarcinoma through thymidylate synthase (TYMS): implications of FOXM1–TYMS axis uncoupling in 5-FU resistance. Cell Death Dis 2018; 9(12): 1185.
[http://dx.doi.org/10.1038/s41419-018-1235-0] [PMID: 30538221]
[37]
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. Med Oncol 2022; 40(1): 3.
[http://dx.doi.org/10.1007/s12032-022-01864-z] [PMID: 36308643]
[38]
Dong S, Liang S, Cheng Z, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Cancer Res 2022; 41(1): 15.
[http://dx.doi.org/10.1186/s13046-021-02229-6] [PMID: 34998404]
[39]
Pranzini E, Pardella E, Muccillo L, et al. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep 2022; 40(7): 111233.
[http://dx.doi.org/10.1016/j.celrep.2022.111233] [PMID: 35977477]
[40]
Fang L, Lv J, Xuan Z, et al. Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2‐mediated autophagy. Clin Transl Med 2022; 12(1): e708.
[http://dx.doi.org/10.1002/ctm2.708] [PMID: 35075806]
[41]
Yue Y, Zhang Q, Wang X, Sun Z. STAT3 regulates 5‐Fu resistance in human colorectal cancer cells by promoting Mcl‐1–dependent cytoprotective autophagy. Cancer Sci 2023; 114(6): 2293-305.
[http://dx.doi.org/10.1111/cas.15761] [PMID: 36788743]
[42]
Zhang Q, Liu RX, Chan KW, et al. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells. J Exp Clin Cancer Res 2019; 38(1): 320.
[http://dx.doi.org/10.1186/s13046-019-1314-9] [PMID: 31324203]
[43]
Li M, Xia M, Zhang Z, et al. METTL3 antagonizes 5 FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol 2022; 61(3): 106.
[http://dx.doi.org/10.3892/ijo.2022.5396] [PMID: 35856434]
[44]
Waghela BN, Vaidya FU, Pathak C. Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells. Biochemistry (Mosc) 2021; 86(3): 262-74.
[http://dx.doi.org/10.1134/S0006297921030044] [PMID: 33838628]
[45]
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[46]
Huang H, Han Q, Zheng H, et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13(1): 13.
[http://dx.doi.org/10.1038/s41419-021-04474-1] [PMID: 34930918]
[47]
Wei S, Zhao Q, Zheng K, et al. GFAT1-linked TAB1 glutamylation sustains p38 MAPK activation and promotes lung cancer cell survival under glucose starvation. Cell Discov 2022; 8(1): 77.
[http://dx.doi.org/10.1038/s41421-022-00423-0] [PMID: 35945223]
[48]
Zhu Q, Zhang Q, Gu M, et al. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma. Autophagy 2021; 17(7): 1667-83.
[http://dx.doi.org/10.1080/15548627.2020.1781368] [PMID: 32627648]
[49]
Xing Y, Wei X, Liu Y, et al. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway. Autophagy 2022; 18(8): 1932-54.
[http://dx.doi.org/10.1080/15548627.2021.2008752] [PMID: 34878954]
[50]
de la Cruz-Morcillo MA, Valero MLL, Callejas-Valera JL, et al. RETRACTED ARTICLE: P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene 2012; 31(9): 1073-85.
[http://dx.doi.org/10.1038/onc.2011.321] [PMID: 21841826]
[51]
Kudaravalli S, den Hollander P, Mani SA. Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene 2022; 41(23): 3177-85.
[http://dx.doi.org/10.1038/s41388-022-02329-3] [PMID: 35501462]
[52]
Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3–p38 MAPK signalling. Cancer Lett 2019; 442: 320-32.
[http://dx.doi.org/10.1016/j.canlet.2018.10.015] [PMID: 30391782]
[53]
Zhenhai Z, Qi C, Shuchao Z, et al. MiR-205-3p suppresses bladder cancer progression via GLO1 mediated P38/ERK activation. BMC Cancer 2023; 23(1): 956.
[http://dx.doi.org/10.1186/s12885-023-11175-9] [PMID: 37814205]