In silico and In vitro Assessment of Dimeric Flavonoids (Brachydins) on Rhipicephalus microplus Glutathione S-transferase

Page: [912 - 919] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Rhipicephalus microplus, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control.

Method: To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from Fridericia platyphylla roots and to evaluate their potential as inhibitors of R. microplus GST.

Results: In vitro assays confirmed the inhibition of R. microplus GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC50 values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a threedimensional model of R. microplus GST revealed predicted interactions with MolDock Scores of - 142.537, -126.831, -108.571, and -123.041, respectively. Both in silico and in vitro analyses show that brachydins are potential inhibitors of R. microplus GST.

Conclusion: The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.

[1]
Grisi, L.; Leite, R.C.; Martins, J.R.S.; Barros, A.T.M.; Andreotti, R.; Cançado, P.H.D.; León, A.A.P.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet., 2014, 23(2), 150-156.
[http://dx.doi.org/10.1590/S1984-29612014042] [PMID: 25054492]
[2]
Agwunobi, D.O.; Yu, Z.; Liu, J. A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation. Pestic. Biochem. Physiol., 2021, 173(1), 104776.
[http://dx.doi.org/10.1016/j.pestbp.2021.104776] [PMID: 33771255]
[3]
Waldman, J.; Klafke, G.M.; Tirloni, L.; Logullo, C.; da Silva Vaz, I. Jr Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis., 2023, 14(3), 102123.
[http://dx.doi.org/10.1016/j.ttbdis.2023.102123] [PMID: 36716581]
[4]
Bezerra, W.A.S.; Tavares, C.P.; Rocha, C.Q.; Vaz Junior, I.S.; Michels, P.A.M.; Costa Junior, L.M.; Soares, A.M.S. Anonaine from Annona crassiflora inhibits glutathione S-transferase and improves cypermethrin activity on Rhipicephalus (Boophilus) microplus (Canestrini, 1887). Exp. Parasitol., 2022, 243, 108398.
[http://dx.doi.org/10.1016/j.exppara.2022.108398] [PMID: 36228702]
[5]
Ozelame, K.P.C.; Mattia, M.M.C.; Dedavid e Silva, L.A.; Randall, L.M.; Corvo, I.; Saporiti, T.; Seixas, A.; da Silva Vaz, I., Jr; Alvarez, G. Novel tick glutathione transferase inhibitors as promising acaricidal compounds. Ticks Tick Borne Dis., 2022, 13(5), 101970.
[http://dx.doi.org/10.1016/j.ttbdis.2022.101970] [PMID: 35662066]
[6]
Thakur, A.; Patwa, J.; Sharma, A.; Flora, S.J.S. Synthesis, molecular docking, BSA, and in vitro reactivation study of imidazopyridine oximes against paraoxon inhibited acetylcholinesterase. Med. Chem., 2022, 18(2), 273-287.
[http://dx.doi.org/10.2174/1573406417666210208223240] [PMID: 33563155]
[7]
Otarigho, B.; Falade, M.O. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase. Life, 2023, 13(10), 1957.
[http://dx.doi.org/10.3390/life13101957] [PMID: 37895339]
[8]
Turkan, F.; Harbi Calimli, M.; Akgun, A.; Gulbagca, F.; Sen, F. Toxicological effects of some antiparasitic drugs on equine liver glutathione S-Transferase enzyme activity. J. Pharm. Biomed. Anal., 2020, 180, 113048.
[http://dx.doi.org/10.1016/j.jpba.2019.113048] [PMID: 31887670]
[9]
Costa-Júnior, L.M.; Miller, R.J.; Alves, P.B.; Blank, A.F.; Li, A.Y.; Pérez de León, A.A. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus. Vet. Parasitol., 2016, 228(1), 60-64.
[http://dx.doi.org/10.1016/j.vetpar.2016.05.028] [PMID: 27692332]
[10]
Quadros, D.G.; Johnson, T.L.; Whitney, T.R.; Oliver, J.D.; Oliva Chávez, A.S. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or Utopia? Insects, 2020, 11(8), 490.
[http://dx.doi.org/10.3390/insects11080490] [PMID: 32752256]
[11]
Selles, S.M.A.; Kouidri, M.; González, M.G.; González, J.; Sánchez, M.; González-Coloma, A.; Sanchis, J.; Elhachimi, L.; Olmeda, A.S.; Tercero, J.M.; Valcárcel, F. Acaricidal and repellent effects of essential oils against ticks: a review. Pathogens, 2021, 10(11), 1379.
[http://dx.doi.org/10.3390/pathogens10111379] [PMID: 34832535]
[12]
El Haddad, D.; Bitam, I.; Bouchenak, O.; Toubal, S.; Yahiaoui, K.; Arab, K.; Boumaza, S. Acaricidal activity of flavonoids extract of Borago officinalis L. (Boraginaceae) against brown dog tick, Rhipicephalus sanguineus (Latreille, 1806). Trop. Biomed., 2018, 35(2), 383-391.
[PMID: 33601812]
[13]
Cen-Pacheco, F.; Ortiz-Celiseo, A.; Peniche-Cardeña, A.; Bravo-Ruiz, O.; López-Fentanes, F.C.; Valerio-Alfaro, G.; Fernández, J.J. Studies on the bioactive flavonoids isolated from Azadirachta indica. Nat. Prod. Res., 2020, 34(24), 3483-3491.
[http://dx.doi.org/10.1080/14786419.2019.1579808] [PMID: 30835540]
[14]
Hamed, R.R.; Maharem, T.M.; Guneidy, R.A.; Emam, M.A.; Abdel Karim, G.S.A. Purification of fat body glutathione S ‐transferase from the desert locust Schistocerca gregaria: investigation of flavonoid inhibitory effects on enzyme activity. Physiol. Entomol., 2019, 44(3-4), 187-199.
[http://dx.doi.org/10.1111/phen.12289]
[15]
Inaba, K.; Ebihara, K.; Senda, M.; Yoshino, R.; Sakuma, C.; Koiwai, K.; Takaya, D.; Watanabe, C.; Watanabe, A.; Kawashima, Y.; Fukuzawa, K.; Imamura, R.; Kojima, H.; Okabe, T.; Uemura, N.; Kasai, S.; Kanuka, H.; Nishimura, T.; Watanabe, K.; Inoue, H.; Fujikawa, Y.; Honma, T.; Hirokawa, T.; Senda, T.; Niwa, R. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol., 2022, 20(1), 43.
[http://dx.doi.org/10.1186/s12915-022-01233-2] [PMID: 35172816]
[16]
da Rocha, C.Q.; Queiroz, E.F.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Marcourt, L.; Vilegas, W.; Wolfender, J.L. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J. Nat. Prod., 2014, 77(6), 1345-1350.
[http://dx.doi.org/10.1021/np401060j] [PMID: 24871307]
[17]
Rocha, V.; Quintino da Rocha, C.; Ferreira Queiroz, E.; Marcourt, L.; Vilegas, W.; Grimaldi, G.; Furrer, P.; Allémann, É.; Wolfender, J.L.; Soares, M. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules, 2018, 24(1), 1-13.
[http://dx.doi.org/10.3390/molecules24010001] [PMID: 30577423]
[18]
Saramago, L.; Gomes, H.; Aguilera, E.; Cerecetto, H.; González, M.; Cabrera, M.; Alzugaray, M.; da Silva Vaz Junior, I.; Nunes da Fonseca, R.; Aguirre-López, B.; Cabrera, N.; Pérez-Montfort, R.; Merlino, A.; Moraes, J.; Álvarez, G. Novel and selective Rhipicephalus microplus triosephosphate isomerase inhibitors with acaricidal activity. Vet. Sci., 2018, 5(3), 74.
[http://dx.doi.org/10.3390/vetsci5030074] [PMID: 30142944]
[19]
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[20]
Bitar, R.; Parker, M.; Walker, J. Drug discovery. Translational interventional radiology; Elsevier, 2023, pp. 51-54.
[http://dx.doi.org/10.1016/B978-0-12-823026-8.00029-8]
[21]
Adibi, H.; Khodarahmi, R.; Ezati, M.; Ghavamipour, F.; Khosravi, N.; Sajedi, R.H.; Chalabi, M.; Farokhi, A. Synthesis and potential antidiabetic properties of curcumin-based derivatives: an in vitro and in silico study of α-glucosidase and α-amylase inhibition. Med. Chem., 2023, 19(1), 99-117.
[http://dx.doi.org/10.2174/1573406418666220509101854] [PMID: 35579152]
[22]
da Rocha, C.Q.; de-Faria, F.M.; Marcourt, L.; Ebrahimi, S.N.; Kitano, B.T.; Ghilardi, A.F.; Luiz Ferreira, A.; de Almeida, A.C.A.; Dunder, R.J.; Souza-Brito, A.R.M.; Hamburger, M.; Vilegas, W.; Queiroz, E.F.; Wolfender, J.L. Gastroprotective effects of hydroethanolic root extract of Arrabidaea brachypoda: Evidences of cytoprotection and isolation of unusual glycosylated polyphenols. Phytochemistry, 2017, 135, 93-105.
[http://dx.doi.org/10.1016/j.phytochem.2016.12.002] [PMID: 28010885]
[23]
da Silva Vaz, I., Jr; Torino Lermen, T.; Michelon, A.; Sanchez Ferreira, C.A.; Joaquim de Freitas, D.R.; Termignoni, C.; Masuda, A. Effect of acaricides on the activity of a Boophilus microplus glutathione S-transferase. Vet. Parasitol., 2004, 119(2-3), 237-245.
[http://dx.doi.org/10.1016/j.vetpar.2003.11.004] [PMID: 14746982]
[24]
Ndawula, C., Jr; Sabadin, G.A.; Parizi, L.F.; da Silva Vaz, I., Jr Constituting a glutathione S-transferase-cocktail vaccine against tick infestation. Vaccine, 2019, 37(14), 1918-1927.
[http://dx.doi.org/10.1016/j.vaccine.2019.02.039] [PMID: 30824358]
[25]
Habig, W.H.; Pabst, M.J.; Fleischner, G.; Gatmaitan, Z.; Arias, I.M.; Jakoby, W.B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3879-3882.
[http://dx.doi.org/10.1073/pnas.71.10.3879] [PMID: 4139704]
[26]
Choi, J.; Reipa, V.; Hitchins, V.M.; Goering, P.L.; Malinauskas, R.A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol. Sci., 2011, 123(1), 133-143.
[http://dx.doi.org/10.1093/toxsci/kfr149] [PMID: 21652737]
[27]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[28]
Wadapurkar, R.M.; Shilpa, M.D.; Katti, A.K.S.; Sulochana, M.B. In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. Informatics in Medicine Unlocked, 2018, 10, 58-70.
[http://dx.doi.org/10.1016/j.imu.2017.11.002]
[29]
Tong, J.B.; Luo, D.; Bian, S.; Zhang, X. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J. Mol. Liq., 2021, 335, 116235.
[http://dx.doi.org/10.1016/j.molliq.2021.116235]
[30]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[31]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[32]
Roditakis, E.; Roditakis, N.E.; Tsagkarakou, A. Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pest Manag. Sci., 2005, 61(6), 577-582.
[http://dx.doi.org/10.1002/ps.1029] [PMID: 15712366]
[33]
Obaid, M.K.; Islam, N.; Alouffi, A.; Khan, A.Z.; da Silva Vaz, I., Jr; Tanaka, T.; Ali, A. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Front. Cell. Infect. Microbiol., 2022, 12, 941831.
[http://dx.doi.org/10.3389/fcimb.2022.941831] [PMID: 35873149]
[34]
Malak, N.; Alotaibi, B.S.; Khan, A.; Khan, A.; Ullah, S.; Nasreen, N.; Niaz, S.; Chen, C.C. Density functional theory calculations and molecular docking analyses of flavonoids for their possible application against the acetylcholinesterase and triose-phosphate isomerase proteins of Rhipicephalus microplus. Molecules, 2023, 28(8), 3606.
[http://dx.doi.org/10.3390/molecules28083606] [PMID: 37110838]
[35]
de Lima, C.A.; Cubero, M.C.Z.; Franco, Y.E.M.; Rodrigues, C.D.P.; do Nascimento, J.R.; Vendramini-Costa, D.B.; Sciani, J.M.; da Rocha, C.Q.; Longato, G.B. Antiproliferative activity of two unusual dimeric flavonoids, brachydin E and brachydin F, isolated from Fridericia platyphylla (Cham.) LG Lohmann: in vitro and molecular docking evaluation. BioMed Res. Int., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/3319203] [PMID: 35187163]
[36]
Boušová, I.; Skálová, L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab. Rev., 2012, 44(4), 267-286.
[http://dx.doi.org/10.3109/03602532.2012.713969] [PMID: 22998389]
[37]
Makris, S.L.; Kim, J.H.; Ellis, A.; Faber, W.; Harrouk, W.; Lewis, J.M.; Paule, M.G.; Seed, J.; Tassinari, M.; Tyl, R. Current and future needs for developmental toxicity testing. Birth Defects Res. B Dev. Reprod. Toxicol., 2011, 92(5), 384-394.
[http://dx.doi.org/10.1002/bdrb.20335] [PMID: 21922641]
[38]
Arome, D.; Chinedu, E. The importance of toxicity testing. Journal of Pharmaceutical BioSciences., 2013, 4, 146-148.
[39]
Ata, A.; Udenigwe, C. The discovery and application of inhibitors of glutathione S-transferase as therapeutic agents-a review. Curr. Bioact. Compd., 2008, 4(1), 41-50.
[http://dx.doi.org/10.2174/157340708784533384]
[40]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[41]
Xavier, M.M.; Heck, G.S.; de Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; de Azevedo, W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[42]
Liu, Z.; Wang, G.; Li, Z.; Wang, R. Geometrical preferences of the hydrogen bonds on protein−ligand binding interface derived from statistical surveys and quantum mechanics calculations. J. Chem. Theory Comput., 2008, 4(11), 1959-1973.
[http://dx.doi.org/10.1021/ct800267x] [PMID: 26620338]
[43]
Bianchi, V.; Gherardini, P.F.; Helmer-Citterich, M.; Ausiello, G. Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities. BMC Bioinformatics, 2012, 13(S4)(Suppl. 4), S17.
[http://dx.doi.org/10.1186/1471-2105-13-S4-S17] [PMID: 22536963]
[44]
Pavlidi, N.; Khalighi, M.; Myridakis, A.; Dermauw, W.; Wybouw, N.; Tsakireli, D.; Stephanou, E.G.; Labrou, N.E.; Vontas, J.; Van Leeuwen, T. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem. Mol. Biol., 2017, 80, 101-115.
[http://dx.doi.org/10.1016/j.ibmb.2016.12.003] [PMID: 27932274]
[45]
Hou, T.; Wang, J.; Li, Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model., 2007, 47(6), 2408-2415.
[http://dx.doi.org/10.1021/ci7002076] [PMID: 17929911]
[46]
Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model., 2007, 47(1), 208-218.
[http://dx.doi.org/10.1021/ci600343x] [PMID: 17238266]
[47]
Erlejman, A.G.; Verstraeten, S.V.; Fraga, C.G.; Oteiza, P.I. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radic. Res., 2004, 38(12), 1311-1320.
[http://dx.doi.org/10.1080/10715760400016105] [PMID: 15763955]
[48]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[49]
Leeson, P.D.; Davis, A.M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem., 2004, 47(25), 6338-6348.
[http://dx.doi.org/10.1021/jm049717d] [PMID: 15566303]
[50]
O’Shea, R.; Moser, H.E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem., 2008, 51(10), 2871-2878.
[http://dx.doi.org/10.1021/jm700967e] [PMID: 18260614]
[51]
Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis., 2017, 17(2), e30-e41.
[http://dx.doi.org/10.1016/S1473-3099(16)30323-1] [PMID: 27979695]
[52]
Wiedemar, N; Hauser, DA; Mäser, P 100 years of suramin. Antimicrobi. agen. chemother., 2020, 64(3), 1-14.
[http://dx.doi.org/10.1128/AAC.01168-19]
[53]
Adenubi, O.T.; Ahmed, A.S.; Fasina, F.O.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crops Prod., 2018, 123(1), 779-806.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.075]