New 3-Hydroxypyridine-4-one Analogues: Their Synthesis, Antimicrobial Evaluation, Molecular Docking, and In Silico ADME Prediction

Page: [900 - 911] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Drug resistance to existing antimicrobial drugs has become a serious threat to human health, which highlights the need to develop new antimicrobial agents.

Method: In this study, a new set of 3-hydroxypyridine-4-one derivatives (6a-j) was synthesized, and the antimicrobial effects of these derivatives were evaluated against a variety of microorganisms using the microdilution method. The antimicrobial evaluation indicated that compound 6c, with an electron-donating group -OCH3 at the meta position of the phenyl ring, was the most active compound against S. aureus and E. coli species with an MIC value of 32 μg/mL. Compound 6c was more potent than ampicillin as a reference drug.

Result: The in vitro antifungal results showed that the studied derivatives had moderate effects (MIC = 128-512 μg/mL) against C. albicans and A. niger species. The molecular modeling studies revealed the possible mechanism and suitable interactions of these derivatives with the target protein.

Conclusion: The obtained biological results offer valuable insights into the design of more effective antimicrobial agents.

[1]
Van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Clin. Infect. Dis., 2016, 30(2), 377-390.
[2]
Jain, P.; Sharma, S.; Kumar, N.; Misra, N. Ni(II) and Cu(II) complexes of bidentate thiosemicarbazone ligand: Synthesis, structural, theoretical, biological studies and molecular modeling. Appl. Organomet. Chem., 2020, 34(9), e5736.
[http://dx.doi.org/10.1002/aoc.5736]
[3]
Kumar, R.; Seema, K.; Singh, D.K.; Jain, P.; Manav, N.; Gautam, B.; Kumar, S.N. Synthesis, antibacterial and antifungal activities of Schiff base rare earth metal complexes: A review of recent work. J. Coord. Chem., 2023, 76(9-10), 1065-1093.
[http://dx.doi.org/10.1080/00958972.2023.2231608]
[4]
Sadeghian, S. Evaluation of antibacterial and anticandidal activities of some imidazole, benzimidazole and benztriazole derivatives. Trends Pharmacol. Sci., 2022, 8(2), 75-84.
[5]
van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: An update. Infect. Dis. Clin. North Am., 2020, 34(4), 709-722.
[http://dx.doi.org/10.1016/j.idc.2020.08.002] [PMID: 33011046]
[6]
Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; McCarthy, N.; Paul, P.; McDonald, L.C.; Kallen, A.; Fiore, A.; Craig, M.; Baggs, J. Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. N. Engl. J. Med., 2020, 382(14), 1309-1319.
[http://dx.doi.org/10.1056/NEJMoa1914433] [PMID: 32242356]
[7]
Sadeghian, S.; Bekhradi, F.; Mansouri, F.; Razmi, R.; Mansouri, S.G.; Poustforoosh, A.; Khabnadideh, S.; Zomorodian, K.; Zareshahrabadi, Z.; Rezaei, Z. Imidazole derivatives as novel and potent antifungal agents: Synthesis, biological evaluation, molecular docking study, molecular dynamic simulation and ADME prediction. J. Mol. Struct., 2024, 1302, 137447.
[http://dx.doi.org/10.1016/j.molstruc.2023.137447]
[8]
Houben, R.M.G.J.; Dodd, P.J. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med., 2016, 13(10), e1002152.
[http://dx.doi.org/10.1371/journal.pmed.1002152] [PMID: 27780211]
[9]
Funda Tay, N.; Berk, B.; Duran, M.; Kayagil, İ.; Yurttaş, L.; Biltekin Kaleli, S.N.; Yamaç, M.; Karaduman, A.B.; Demirayak, Ş. Synthesis, antimicrobial activity and modeling studies of thiazoles bearing pyridyl and triazolyl scaffolds. Z. Naturforsch. C J. Biosci., 2022, 77(9-10), 429-446.
[http://dx.doi.org/10.1515/znc-2022-0002] [PMID: 35472438]
[10]
Luo, X.; Song, Y.; Cao, Z.; Qin, Z.; Dessie, W.; He, N.; Wang, Z.; Tan, Y. Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. Food Biosci., 2022, 49, 101903.
[http://dx.doi.org/10.1016/j.fbio.2022.101903]
[11]
Piste, D.P.B. Novel synthesis and antimicrobial activities of thiazino-oxazine derivatives. Int. J. Pharm. Sci. Drug Res., 2018, 10(4), 206-212.
[http://dx.doi.org/10.25004/IJPSDR.2018.100401]
[12]
Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine hybrid with some new pyridine-2-one derivatives: design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics, 2021, 10(2), 162.
[http://dx.doi.org/10.3390/antibiotics10020162] [PMID: 33562582]
[13]
Eissa, S.I.; Farrag, A.M.; Abbas, S.Y.; El Shehry, M.F.; Ragab, A.; Fayed, E.A.; Ammar, Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem., 2021, 110, 104803.
[http://dx.doi.org/10.1016/j.bioorg.2021.104803] [PMID: 33761314]
[14]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[15]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[16]
Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851]
[17]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[18]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[19]
Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.; Bavantula, R. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33, 127746.
[http://dx.doi.org/10.1016/j.bmcl.2020.127746] [PMID: 33333162]
[20]
Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione–coumarin molecular hybrids. ACS Omega, 2019, 4(5), 8720-8730.
[http://dx.doi.org/10.1021/acsomega.8b02481] [PMID: 31459961]
[21]
Marinescu, M. Synthesis of antimicrobial benzimidazole–pyrazole compounds and their biological activities. Antibiotics, 2021, 10(8), 1002.
[http://dx.doi.org/10.3390/antibiotics10081002] [PMID: 34439052]
[22]
Lal, K.; Poonia, N.; Rani, P.; Kumar, A.; Kumar, A. Design, synthesis, antimicrobial evaluation and docking studies of urea-triazole-amide hybrids. J. Mol. Struct., 2020, 1215, 128234.
[http://dx.doi.org/10.1016/j.molstruc.2020.128234]
[23]
Chaves, S.; Piemontese, L.; Hiremathad, A.; Santos, M.A. Hydroxypyridinone derivatives: A fascinating class of chelators with therapeutic applications-an update. Curr. Med. Chem., 2018, 25(1), 97-112.
[http://dx.doi.org/10.2174/0929867324666170330092304] [PMID: 28359230]
[24]
Dai, X.Y.; Zhang, M-X.; Wei, X-Y.; Hider, R.C.; Zhou, T. Novel multifunctional hydroxypyridinone derivatives as potential shrimp preservatives. Food Bioprocess Technol., 2016, 9(7), 1079-1088.
[http://dx.doi.org/10.1007/s11947-016-1694-1]
[25]
Singh, L.R.; Chen, Y.L.; Xie, Y.Y.; Xia, W.; Gong, X.W.; Hider, R.C.; Zhou, T. Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1562-1567.
[http://dx.doi.org/10.1080/14756366.2020.1801669] [PMID: 32746652]
[26]
Shao, L.L.; Wang, X.L.; Chen, K.; Dong, X.W.; Kong, L.M.; Zhao, D.Y.; Hider, R.C.; Zhou, T. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem., 2018, 242, 174-181.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.054] [PMID: 29037675]
[27]
He, M.; Fan, M.; Peng, Z.; Wang, G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem., 2021, 221, 113546.
[http://dx.doi.org/10.1016/j.ejmech.2021.113546] [PMID: 34023737]
[28]
Fassihi, A.; Hasanzadeh, F.; Attar, A.; Saghaie, L.; Mohammadpour, M. Synthesis and evaluation of antioxidant activity of some novel hydroxypyridinone derivatives: A DFT approach for explanation of their radical scavenging activity. Res. Pharm. Sci., 2020, 15(6), 515-528.
[http://dx.doi.org/10.4103/1735-5362.301336] [PMID: 33828595]
[29]
Dehkordi, M.M.; Asgarshamsi, M.H.; Fassihi, A.; Zborowski, K.K. A comparative DFT study on the antioxidant activity of some novel 3‐hydroxypyridine‐4‐one derivatives. Chem. Biodivers., 2022, 19(3), e202100703.
[http://dx.doi.org/10.1002/cbdv.202100703] [PMID: 34997823]
[30]
Sadeghi-Aliabadi, H.; Zanjanchi, M.A.; Saghaie, L.; Borzoei, M. Evaluation of the cytotoxic effect of hydroxypyridinone derivatives on HCT116 and SW480 colon cancer cell lines. Pharm. Chem. J., 2019, 53(5), 388-391.
[http://dx.doi.org/10.1007/s11094-019-02010-2]
[31]
Faidallah, H.M.; Rostom, S.A.F.; Khan, K.A.; Basaif, S.A. Synthesis and characterization of some hydroxypyridone derivatives and their evaluation as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 926-935.
[http://dx.doi.org/10.3109/14756366.2012.694880] [PMID: 22803670]
[32]
Santos, M.A.; Chaves, S. 3-hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Future Med. Chem., 2015, 7(3), 383-410.
[http://dx.doi.org/10.4155/fmc.14.162] [PMID: 25826364]
[33]
Zhou, T.; Chen, K.; Kong, L.M.; Liu, M.S.; Ma, Y.M.; Xie, Y.Y.; Hider, R.C. Synthesis, iron binding and antimicrobial properties of hexadentate 3-hydroxypyridinones-terminated dendrimers. Bioorg. Med. Chem. Lett., 2018, 28(14), 2504-2512.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.058] [PMID: 29886020]
[34]
Zhou, Y.J.; Liu, M.S.; Osamah, A.R.; Kong, X.L.; Alsam, S.; Battah, S.; Xie, Y.Y.; Hider, R.C.; Zhou, T. Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: Design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. Eur. J. Med. Chem., 2015, 94, 8-21.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.050] [PMID: 25747496]
[35]
Hassani, B.; Zare, F.; Emami, L.; Khoshneviszadeh, M.; Fazel, R.; Kave, N.; Sabet, R.; Sadeghpour, H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Advances, 2023, 13(46), 32433-32443.
[http://dx.doi.org/10.1039/D3RA06490E] [PMID: 37942455]
[36]
Sadeghian, S.; Zare, F.; Goshtasbi, G.; Fassihi, A.; Saghaie, L.; Zare, P.; Sabet, R. Synthesis, antimicrobial evaluation, molecular docking, and ADME studies of some novel 3‐hydroxypyridine‐4‐one derivatives. ChemistrySelect, 2023, 8(44), e202302408.
[http://dx.doi.org/10.1002/slct.202302408]
[37]
Sabet, R.; Fassihi, A.; Saghaie, L. Octanol-water partition coefficients determination and QSPR study of some 3-hydroxy pyridine-4-one derivatives. J. Pharm. Res. Int., 2018, 22(4), 1-16.
[http://dx.doi.org/10.9734/JPRI/2018/41142]
[38]
Muthukumar, R.; Karnan, M.; Elangovan, N.; Karunanidhi, M.; Sankarapandian, V.; Venkateswaran, K. Synthesis, experimental antimicrobial activity, theoretical vibrational analysis, quantum chemical modeling and molecular docking studies of (E)-4-(benzylideneamino)benzenesulfonamide. J. Mol. Struct., 2022, 1263, 133187.
[http://dx.doi.org/10.1016/j.molstruc.2022.133187]
[39]
Zare, F. Structure-based virtual screening, molecular docking, molecular dynamics simulation and MM/PBSA calculations towards identification of steroidal and non-steroidal selective glucocorticoid receptor modulators. J. Biomol. Struct. Dyn., 2023, 41(16), 7640-7650.
[PMID: 36134594]
[40]
Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of clausena anisata: A potent inhibitor for quorum sensing. Adv. Appl. Bioinform. Chem., 2021, 14, 13-24.
[http://dx.doi.org/10.2147/AABC.S290912] [PMID: 33584098]
[41]
Deb, P.K.; Al-Shar’i, N.A.; Venugopala, K.N.; Pillay, M.; Borah, P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 869-884.
[http://dx.doi.org/10.1080/14756366.2021.1900162] [PMID: 34060396]
[42]
El-Dean, A.M.K.; Abdel-Moneam, M.E. Synthesis of pyrimidines, thienopyrimidines, and pyrazolopyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(12), 2745-2751.
[http://dx.doi.org/10.1080/10426500214894]
[43]
Eno, E.A.; Mbonu, J.I.; Louis, H.; Patrick-Inezi, F.S.; Gber, T.E.; Unimuke, T.O.; Okon, E.E.D.; Benjamin, I.; Offiong, O.E. Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: Experimental, DFT studies, and molecular docking investigation. J. Indian Chem. Soc., 2022, 99(7), 100524.
[http://dx.doi.org/10.1016/j.jics.2022.100524]
[44]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[45]
Kumar, A.; Kumar, V.; Kumari, K.; Jain, P.; Kaushik, N.K.; Singh, P. Promising iron(II) complexes of curcumins: Designing, density functional theory, and molecular docking. J. Phys. Org. Chem., 2021, 34(7), e4196.
[http://dx.doi.org/10.1002/poc.4196]
[46]
Saíz-Urra, L.; Cabrera, M.A.; Froeyen, M. Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation. J. Mol. Graph. Model., 2011, 29(5), 726-739.
[http://dx.doi.org/10.1016/j.jmgm.2010.12.005] [PMID: 21216167]
[47]
Omar, M.A.; Masaret, G.S.; Abbas, E.M.H.; Abdel-Aziz, M.M.; Harras, M.F.; Farghaly, T.A. Novel anti-tubercular and antibacterial based benzosuberone-thiazole moieties: Synthesis, molecular docking analysis, DNA gyrase supercoiling and ATPase activity. Bioorg. Chem., 2020, 104, 104316.
[http://dx.doi.org/10.1016/j.bioorg.2020.104316] [PMID: 33022549]
[48]
Kashyap, A.; Singh, P.K.; Satpati, S.; Verma, H.; Silakari, O. Pharmacophore modeling and molecular dynamics approach to identify putative DNA Gyrase B inhibitors for resistant tuberculosis. J. Cell. Biochem., 2019, 120(3), 3149-3159.
[http://dx.doi.org/10.1002/jcb.27579] [PMID: 30191589]
[49]
Ghannam, I.A.Y.; Abd El-Meguid, E.A.; Ali, I.H.; Sheir, D.H.; El Kerdawy, A.M. Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg. Chem., 2019, 93, 103373.
[http://dx.doi.org/10.1016/j.bioorg.2019.103373] [PMID: 31698294]
[50]
Jukič, M.; Ilaš, J.; Brvar, M.; Kikelj, D.; Cesar, J.; Anderluh, M. Linker-switch approach towards new ATP binding site inhibitors of DNA gyrase B. Eur. J. Med. Chem., 2017, 125, 500-514.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.040] [PMID: 27689732]