SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration
  • * (Excluding Mailing and Handling)

Abstract

Introduction: Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME).

Method: Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3.

Result: A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape.

Conclusion : Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Wondergem NE, Nauta IH, Muijlwijk T, Leemans CR, van de Ven R. The immune microenvironment in head and neck squamous cell carcinoma: On subsets and subsites. Curr Oncol Rep 2020; 22(8): 81-95.
[http://dx.doi.org/10.1007/s11912-020-00938-3] [PMID: 32602047]
[3]
Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 2014; 40(4): 558-66.
[http://dx.doi.org/10.1016/j.ctrv.2013.10.001] [PMID: 24176790]
[4]
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021; 221(10): 107753.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107753] [PMID: 33259885]
[5]
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 2016; 27(8): 1482-92.
[http://dx.doi.org/10.1093/annonc/mdw168] [PMID: 27069014]
[6]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[7]
Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020; 20(11): 662-80.
[http://dx.doi.org/10.1038/s41568-020-0285-7] [PMID: 32753728]
[8]
St Paul M, Ohashi PS. The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol 2020; 30(9): 695-704.
[http://dx.doi.org/10.1016/j.tcb.2020.06.003] [PMID: 32624246]
[9]
Rahim MK, Okholm TLH, Jones KB, et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 2023; 186(6): 1127-1143.e18.
[http://dx.doi.org/10.1016/j.cell.2023.02.021] [PMID: 36931243]
[10]
Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21(11): 718-38.
[http://dx.doi.org/10.1038/s41577-021-00537-8] [PMID: 33981085]
[11]
Feng Z, Bethmann D, Kappler M, et al. Multiparametric immune profiling in HPV– oral squamous cell cancer. JCI Insight 2017; 2(14): e93652.
[http://dx.doi.org/10.1172/jci.insight.93652] [PMID: 28724788]
[12]
Eberhardt CS, Kissick HT, Patel MR, et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 2021; 597(7875): 279-84.
[http://dx.doi.org/10.1038/s41586-021-03862-z] [PMID: 34471285]
[13]
Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013; 4(1): 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[14]
Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87-100.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[15]
Noy R, Pollard JW. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014; 41(1): 49-61.
[http://dx.doi.org/10.1016/j.immuni.2014.06.010] [PMID: 25035953]
[16]
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell 2020; 78(6): 1019-33.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[17]
De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013; 23(3): 277-86.
[http://dx.doi.org/10.1016/j.ccr.2013.02.013] [PMID: 23518347]
[18]
Gunassekaran GR, Vadevoo PSM, Baek MC, Lee B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 2021; 278(8): 121137.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121137] [PMID: 34560422]
[19]
Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol 2022; 13(3): 888713.
[http://dx.doi.org/10.3389/fimmu.2022.888713] [PMID: 35844605]
[20]
Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003; 13(2): 159-67.
[http://dx.doi.org/10.1016/S1044-579X(02)00133-5] [PMID: 12654259]
[21]
Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15(1): 174-88.
[http://dx.doi.org/10.1186/s13045-022-01392-3] [PMID: 36482419]
[22]
Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023; 41(3): 421-33.
[http://dx.doi.org/10.1016/j.ccell.2023.01.009] [PMID: 36801000]
[23]
Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci 2019; 26(1): 78-100.
[http://dx.doi.org/10.1186/s12929-019-0568-z] [PMID: 31629410]
[24]
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28-49.
[http://dx.doi.org/10.1186/s12943-021-01316-8] [PMID: 33546704]
[25]
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14(4): 1133308.
[http://dx.doi.org/10.3389/fimmu.2023.1133308] [PMID: 36845131]
[26]
Alonso MH, Aussó S, Doriga LA, et al. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br J Cancer 2017; 117(3): 421-31.
[http://dx.doi.org/10.1038/bjc.2017.208] [PMID: 28683472]
[27]
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020; 48(W1): W509-14.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[28]
Xiang S, Li J, Shen J, et al. Identification of prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Front Immunol 2021; 12(10): 653836.
[http://dx.doi.org/10.3389/fimmu.2021.653836] [PMID: 33897701]
[29]
Zheng X, Ma Y, Bai Y, et al. Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment. Front Immunol 2022; 13(5): 984480.
[http://dx.doi.org/10.3389/fimmu.2022.984480] [PMID: 36389763]
[30]
Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer 2020; 20(2): 89-106.
[http://dx.doi.org/10.1038/s41568-019-0222-9] [PMID: 31836838]
[31]
Cheng P, Ma J, Zheng X, Zhou C, Chen X. Bioinformatic profiling identifies prognosis-related genes in the immune microenvironment of endometrial carcinoma. Sci Rep 2021; 11(1): 12608.
[http://dx.doi.org/10.1038/s41598-021-92091-5] [PMID: 34131259]
[32]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[33]
Ziegler GC, Almos P, McNeill RV, Jansch C, Lesch KP. Cellular effects and clinical implications of SLC2A3 copy number variation. J Cell Physiol 2020; 235(12): 9021-36.
[http://dx.doi.org/10.1002/jcp.29753] [PMID: 32372501]
[34]
Xiang J, Chen H, Lin Z, Chen J, Luo L. Identification and experimental validation of ferroptosis-related gene SLC2A3 is involved in rheumatoid arthritis. Eur J Pharmacol 2023; 943(3): 175568.
[http://dx.doi.org/10.1016/j.ejphar.2023.175568] [PMID: 36736942]
[35]
Lin L, Que R, Wang J, Zhu Y, Liu X, Xu R. Prognostic value of the ferroptosis-related gene SLC2A3 in gastric cancer and related immune mechanisms. Front Genet 2022; 13(2): 919313.
[http://dx.doi.org/10.3389/fgene.2022.919313] [PMID: 35957685]
[36]
Lang F, Singh Y, Salker MS, et al. Glucose transport in lymphocytes. Pflugers Arch 2020; 472(9): 1401-6.
[http://dx.doi.org/10.1007/s00424-020-02416-y] [PMID: 32529300]
[37]
Estilo CL. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer 2019; 12(12): 9-26.
[http://dx.doi.org/10.1186/1471-2407-9-11] [PMID: 19138406]
[38]
Song MY, Lee DY, Yun SM, Kim EH. GLUT3 promotes epithelial–mesenchymal transition via TGF-β/JNK/ATF2 signaling pathway in colorectal cancer cells. Biomedicines 2022; 10(8): 1837.
[http://dx.doi.org/10.3390/biomedicines10081837] [PMID: 36009381]
[39]
Yao X, He Z, Qin C, et al. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int 2020; 20(1): 503-25.
[http://dx.doi.org/10.1186/s12935-020-01599-9] [PMID: 33061855]
[40]
Lavoro A, Falzone L, Tomasello B, Conti GN, Libra M, Candido S. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front Pharmacol 2023; 14(2): 1191262.
[http://dx.doi.org/10.3389/fphar.2023.1191262] [PMID: 37397501]
[41]
Chan TA, Yarchoan M, Jaffee E, et al. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol 2019; 30(1): 44-56.
[http://dx.doi.org/10.1093/annonc/mdy495] [PMID: 30395155]
[42]
Zhang X, Shi M, Chen T, Zhang B. Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy. Mol Ther Nucleic Acids 2020; 22(3): 298-309.
[http://dx.doi.org/10.1016/j.omtn.2020.08.030] [PMID: 33230435]
[43]
McGrail DJ, Pilié PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 2021; 32(5): 661-72.
[http://dx.doi.org/10.1016/j.annonc.2021.02.006] [PMID: 33736924]
[44]
Kiely M, Lord B, Ambs S. Immune response and inflammation in cancer health disparities. Trends Cancer 2022; 8(4): 316-27.
[http://dx.doi.org/10.1016/j.trecan.2021.11.010] [PMID: 34965905]
[45]
Darvin P, Toor SM, Nair SV, Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med 2018; 50(12): 1-11.
[http://dx.doi.org/10.1038/s12276-018-0191-1] [PMID: 30546008]
[46]
Hoekstra ME, Vijver SV, Schumacher TN. Modulation of the tumor micro-environment by CD8+ T cell-derived cytokines. Curr Opin Immunol 2021; 69(23): 65-71.
[http://dx.doi.org/10.1016/j.coi.2021.03.016]
[47]
Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity 2023; 56(1): 32-42.
[http://dx.doi.org/10.1016/j.immuni.2022.12.008] [PMID: 36630916]
[48]
Philip M, Schietinger A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22(4): 209-23.
[http://dx.doi.org/10.1038/s41577-021-00574-3] [PMID: 34253904]
[49]
Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV. Memory CD8+ T cell responses to cancer. Semin Immunol 2020; 49(33): 101435.
[http://dx.doi.org/10.1016/j.smim.2020.101435] [PMID: 33272898]
[50]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[51]
Farhood B, Najafi M, Mortezaee K. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol 2019; 234(6): 8509-21.
[http://dx.doi.org/10.1002/jcp.27782] [PMID: 30520029]
[52]
van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: Insights from single-cell analysis. Nat Rev Cancer 2020; 20(4): 218-32.
[http://dx.doi.org/10.1038/s41568-019-0235-4] [PMID: 32024970]
[53]
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett 2020; 470(102): 126-33.
[http://dx.doi.org/10.1016/j.canlet.2019.11.009] [PMID: 31730903]
[54]
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331(6024): 1565-70.
[http://dx.doi.org/10.1126/science.1203486] [PMID: 21436444]
[55]
Maiorino L, Daßler-Plenker J, Sun L, Egeblad M. Innate immunity and cancer pathophysiology. Annu Rev Pathol 2022; 17(1): 425-57.
[http://dx.doi.org/10.1146/annurev-pathmechdis-032221-115501] [PMID: 34788549]
[56]
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer 2021; 20(1): 131-55.
[http://dx.doi.org/10.1186/s12943-021-01428-1] [PMID: 34635121]
[57]
Cao LL, Kagan JC. Targeting innate immune pathways for cancer immunotherapy. Immunity 2023; 56(10): 2206-17.
[http://dx.doi.org/10.1016/j.immuni.2023.07.018] [PMID: 37703879]
[58]
Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. Clin Cancer Res 2011; 17(19): 6118-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0482] [PMID: 21705455]
[59]
Burke JD, Young HA. IFN-γ: A cytokine at the right time, is in the right place. Semin Immunol 2019; 43(22): 101280.
[http://dx.doi.org/10.1016/j.smim.2019.05.002] [PMID: 31221552]
[60]
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 2021; 12: 636568.
[http://dx.doi.org/10.3389/fimmu.2021.636568] [PMID: 33767702]
[61]
Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation. Curr Opin Immunol 2023; 83(16): 102329.
[http://dx.doi.org/10.1016/j.coi.2023.102329] [PMID: 37130455]
[62]
Overacre-Delgoffe AE, Chikina M, Dadey RE, et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 2017; 169(6): 1130-1141.e11.
[http://dx.doi.org/10.1016/j.cell.2017.05.005] [PMID: 28552348]
[63]
Li D, Li W, Zheng P, et al. A “trained immunity” inducer-adjuvanted nanovaccine reverses the growth of established tumors in mice. J Nanobiotechnology 2023; 21(1): 74-100.
[http://dx.doi.org/10.1186/s12951-023-01832-3] [PMID: 36864424]
[64]
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 2018; 9: 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[65]
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: Teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2022; 22(3): 158-72.
[http://dx.doi.org/10.1038/s41577-021-00566-3] [PMID: 34155388]
[66]
Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine 2018; 101(55): 14-8.
[http://dx.doi.org/10.1016/j.cyto.2016.08.003] [PMID: 27531077]
[67]
Balkwill F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev 2006; 25(3): 409-16.
[http://dx.doi.org/10.1007/s10555-006-9005-3] [PMID: 16951987]
[68]
Cruceriu D, Baldasici O, Balacescu O, Neagoe BI. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol 2020; 43(1): 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[69]
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019; 569(7755): 270-4.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[70]
Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016; 65(2): 124-39.
[http://dx.doi.org/10.1016/j.metabol.2015.10.007] [PMID: 26773935]
[71]
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer 2023; 23(3): 173-88.
[http://dx.doi.org/10.1038/s41568-022-00531-9] [PMID: 36456755]
[72]
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020; 59(7): 766-74.
[http://dx.doi.org/10.1002/mc.23162] [PMID: 32017286]
[73]
Masin M, Vazquez J, Rossi S, et al. GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer Metab 2014; 2(1): 11-31.
[http://dx.doi.org/10.1186/2049-3002-2-11] [PMID: 25097756]
[74]
Gökalp F. An investigation into the usage of monosaccharides with GLUT1 and GLUT3 as prognostic indicators for cancer. Nutr Cancer 2022; 74(2): 515-9.
[http://dx.doi.org/10.1080/01635581.2021.1895233] [PMID: 33724114]
[75]
Dai W, Xu Y, Mo S, et al. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct Target Ther 2020; 5(1): 177-200.
[http://dx.doi.org/10.1038/s41392-020-00220-9] [PMID: 32873793]
[76]
Gao H, Hao Y, Zhou X, et al. Prognostic value of glucose transporter 3 expression in hepatocellular carcinoma. Oncol Lett 2019; 19(1): 691-9.
[http://dx.doi.org/10.3892/ol.2019.11191] [PMID: 31885715]
[77]
Ayala FRR, Rocha RM, Carvalho KC, et al. GLUT1 and GLUT3 as potential prognostic markers for oral squamous cell carcinoma. Molecules 2010; 15(4): 2374-87.
[http://dx.doi.org/10.3390/molecules15042374] [PMID: 20428049]
[78]
Tsai TH, Yang CC, Kou TC, et al. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment. J Cell Physiol 2021; 236(6): 4669-80.
[http://dx.doi.org/10.1002/jcp.30189] [PMID: 33421130]
[79]
Ancey PB, Contat C, Meylan E. Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS J 2018; 285(16): 2926-43.
[http://dx.doi.org/10.1111/febs.14577] [PMID: 29893496]
[80]
Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20(5): 576-90.
[http://dx.doi.org/10.1016/j.ccr.2011.09.009] [PMID: 22094253]
[81]
Choi H, Na KJ. Different glucose metabolic features according to cancer and immune cells in the tumor microenvironment. Front Oncol 2021; 11(11): 769393.
[http://dx.doi.org/10.3389/fonc.2021.769393] [PMID: 34966676]