Current Cancer Drug Targets

Author(s): Liqun Ling, Tianqi Hu, Chenkang Zhou, Shuhui Chen, Lunan Chou, Yuxin Chen, Zhaoting Hu, Kate Huang, Jie Chen, Yumin Wang* and Junjun Wang*

DOI: 10.2174/0115680096292054240409070618

DownloadDownload PDF Flyer Cite As
Low Expression MCEMP1 Promotes Lung Adenocarcinoma Progression and its Clinical Value

Page: [281 - 293] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Lung cancer is a highly prevalent tumor with a lack of biological markers that reflect its progression. Mast cell surface membrane protein 1 (MCEMP1, also known as C19ORF59) has not been reported in lung adenocarcinoma (LUAD).

Objective: We aimed to investigate the role of MCEMP1 in LUAD.

Methods: MCEMP1 expression in LUAD was analyzed using The Cancer Genome Atlas (TCGA) data, and conducted univariate and multivariate Cox regression analyses to evaluate the prognostic significance of MCEMP1 expression in TCGA. Tumor Immune Estimation Resource (TIMER) was used for examining the correlation between MCEMP1 expression and immune cell infiltration in LUAD. Furthermore, proliferation, migration, invasion, and colony-forming ability were investigated using LUAD cell lines.

Results: MCEMP1 expression in LUAD patient tissues and was correlated with lymph node metastasis, differentiation level, and tumor status. The Area under Curve (AUC) value of MCEMP1 for the Receiver Operating Characteristic (ROC) curve analysis was 0.984. The immune infiltration analysis revealed a correlation between MCEMP1 expression and the extent of macrophages and neutrophil infiltration in LUAD. Additionally, MCEMP1 has low expression in clinical samples, MCEMP1 overexpressed in LUAD cells substantially reduced cell growth, migration, and invasion of malignant cells.

Conclusion: Low expression MCEMP1 promotes LUAD progression, which provides new insights and a potential biological target for future LUAD therapies.

Keywords: LUAD, MCEMP1, TME, biological marker, immune infiltration, TCGA.

Graphical Abstract

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 2018; 9(2): 117.
[http://dx.doi.org/10.1038/s41419-017-0063-y] [PMID: 29371589]
[3]
Ettinger DS, Wood DE, Aisner DL, et al. Non–small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017; 15(4): 504-35.
[http://dx.doi.org/10.6004/jnccn.2017.0050] [PMID: 28404761]
[4]
Sonoda D, Matsuura Y, Kondo Y, et al. A reasonable definition of oligo-recurrence in non–small-cell lung cancer. Clin Lung Cancer 2022; 23(1): 82-90.
[http://dx.doi.org/10.1016/j.cllc.2021.10.013] [PMID: 34836824]
[5]
Giaquinto AN, Miller KD, Tossas KY, Winn RA, Jemal A, Siegel RL. Cancer statistics for African American/Black People 2022. CA Cancer J Clin 2022; 72(3): 202-29.
[http://dx.doi.org/10.3322/caac.21718] [PMID: 35143040]
[6]
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin 2022; 72(5): 409-36.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[7]
Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77(4): 1033-79.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1033] [PMID: 9354811]
[8]
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol (Berl) 2020; 209(4): 531-43.
[http://dx.doi.org/10.1007/s00430-020-00679-x] [PMID: 32507938]
[9]
Aller MA, Arias A, Arias JI, Arias J. Carcinogenesis: The cancer cell–mast cell connection. Inflamm Res 2019; 68(2): 103-16.
[http://dx.doi.org/10.1007/s00011-018-1201-4] [PMID: 30460391]
[10]
Rosenwasser LJ, Boyce JA. Mast cells: Beyond IgE. J Allergy Clin Immunol 2003; 111(1): 24-32.
[http://dx.doi.org/10.1067/mai.2003.60] [PMID: 12532090]
[11]
Oran A, Marshall JS, Kondo S, Paglia D, McKenzie RC. Cyclosporin inhibits intercellular adhesion molecule-1 expression and reduces mast cell numbers in the asebia mouse model of chronic skin inflammation. Br J Dermatol 1997; 136(4): 519-26.
[http://dx.doi.org/10.1046/j.1365-2133.1997.6081584.x] [PMID: 9155951]
[12]
Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019; 51(1): 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[13]
Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: Causes and consequences. Clin Pharmacol Ther 2010; 87(4): 504-8.
[http://dx.doi.org/10.1038/clpt.2009.254] [PMID: 20147899]
[14]
Hammad H, Lambrecht BN. Barrier epithelial cells and the control of Type 2 immunity. Immunity 2015; 43(1): 29-40.
[http://dx.doi.org/10.1016/j.immuni.2015.07.007] [PMID: 26200011]
[15]
Liu B, Yang MQ, Yu TY, et al. Mast cell tryptase promotes inflammatory bowel disease–induced intestinal fibrosis. Inflamm Bowel Dis 2021; 27(2): 242-55.
[http://dx.doi.org/10.1093/ibd/izaa125] [PMID: 32507895]
[16]
Chen JX, Xu X, Zhang S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life 2019; 71(7): 956-68.
[http://dx.doi.org/10.1002/iub.2033] [PMID: 30883005]
[17]
Hu G, Sun N, Jiang J, Chen X. Establishment of a 5-gene risk model related to regulatory T cells for predicting gastric cancer prognosis. Cancer Cell Int 2020; 20(1): 433.
[http://dx.doi.org/10.1186/s12935-020-01502-6] [PMID: 32908454]
[18]
Wang D, Gu Y, Huo C, Zhao Y, Teng M, Li Y. MCEMP1 is a potential therapeutic biomarker associated with immune infiltration in advanced gastric cancer microenvironment. Gene 2022; 840: 146760.
[http://dx.doi.org/10.1016/j.gene.2022.146760] [PMID: 35905854]
[19]
Yarani R, Palasca O, Doncheva NT, et al. Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis. Front Mol Biosci 2023; 9: 1081176.
[http://dx.doi.org/10.3389/fmolb.2022.1081176] [PMID: 36685283]
[20]
Nowak JK, Adams AT, Kalla R, et al. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J Crohn’s Colitis 2022; 16(8): 1255-68.
[http://dx.doi.org/10.1093/ecco-jcc/jjac033] [PMID: 35212366]
[21]
Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28(10): 1563-79.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0221] [PMID: 31575553]
[22]
Li Y, Zhao L, Li XF. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat 2021; 20
[http://dx.doi.org/10.1177/15330338211036304] [PMID: 34350796]
[23]
Picoli CC, Gonçalves BÔP, Santos GSP, et al. Pericytes cross-talks within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1876(2): 188608.
[http://dx.doi.org/10.1016/j.bbcan.2021.188608] [PMID: 34384850]
[24]
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell 2020; 78(6): 1019-33.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[25]
Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2020; 17(1): 1-12.
[http://dx.doi.org/10.1038/s41423-019-0306-1] [PMID: 31611651]
[26]
Baig MS, Roy A, Rajpoot S, et al. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res 2020; 69(5): 435-51.
[http://dx.doi.org/10.1007/s00011-020-01318-0] [PMID: 32162012]
[27]
Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol 2020; 11: 583084.
[http://dx.doi.org/10.3389/fimmu.2020.583084] [PMID: 33365025]
[28]
Nicolò E, Giugliano F, Ascione L, et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: Current landscape and future perspectives. Cancer Treat Rev 2022; 106: 102395.
[http://dx.doi.org/10.1016/j.ctrv.2022.102395] [PMID: 35468539]
[29]
Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J Cell Sci 2020; 133(5): jcs237453.
[http://dx.doi.org/10.1242/jcs.237453] [PMID: 32144194]
[30]
Dahdah A, Gautier G, Attout T, et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest 2014; 124(10): 4577-89.
[http://dx.doi.org/10.1172/JCI75212] [PMID: 25180604]
[31]
Choi YJ, Yoo JS, Jung K, et al. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation. Nat Commun 2023; 14(1): 2045.
[http://dx.doi.org/10.1038/s41467-023-37873-3] [PMID: 37041174]