Recent Advances in Food, Nutrition & Agriculture

Author(s): Jyotsana Dwivedi, Pankaj Kumar, Pranjal Sachan, Charan Singh, Bhagawati Saxena, Ankita Wal and Pranay Wal*

DOI: 10.2174/012772574X289517240222045916

DownloadDownload PDF Flyer Cite As
Phyto-pharmacological Potential of Aegle marmelos (L.) for Neurological Disorders: Progress and Prospects

Page: [12 - 30] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Aegle marmelos, an Indian plant, has been extensively utilized by the people of the Indian subcontinent over about 5000 years. The leaves, bark, roots, and fruits, including seeds, are widely used to cure a variety of diseases in the Indian traditional system of medicine, Ayurveda, along with numerous folk medicines. By revealing the existence of significant bioactive chemicals, modern research has effectively substantiated the therapeutic effects of bael.

Objective: The objective of this study was to review the literature regarding A. marmelos geographical distribution, morphology, therapeutic benefits, and phytochemicals found in the bael leaves, fruits, and other parts of the plant that offer a wide range of pharmacological applications in neurological disorders.

Methodology: A thorough literature search was conducted using five computerized databases, such as PubMed, Google Scholar, ScienceDirect, Elsevier, and Wiley Online Library (WOL), by using standard keywords “A. marmelos,” “Geographical distribution,” “Morphological description,” “Ethnobotanical Uses,” “Phytoconstituents” and “Neuroprotective activities” for review papers published between 1975 and 2023. A small number of earlier review articles focused on phyto-pharmacological potential of Aegle marmelos (L.) for neurological disorders.

Results: According to some research, Aegle marmelos extracts potentially have neuroprotective benefits. This is due to its capacity to alter cellular mechanisms that cause neuronal damage.

Conclusion: Neurodegenerative illnesses usually induce permanent neuronal network loss overall the brain along with the spinal cord (CNS), resulting in chronic functional impairments. The review summarizes the multiple aspects and processes of A. marmelos extract and its components in several models of neurodegenerative diseases such as anxiety, epilepsy, depression, Parkinson's disease, Alzheimer's disease, and others. MDA, nitrite, TNF-, and IL-6 levels were dramatically elevated, whereas glutathione levels were significantly lowered in the hippocampus of STZ-treated rats. Furthermore, STZ-treated rats showed a substantial drop in catalase activity and an increase in AChE activity, indicating cholinergic hypofunction and neuronal injury. The neuroprotective ability of A. marmelos against STZ-induced oxidative stress and cognitive loss in rats suggests that it has therapeutic relevance in Alzheimer's disease (AD).

Keywords: A. marmelos, geographical distribution, morphological description, ethnobotanical uses, phytoconstituents, neuroprotective activities.

Graphical Abstract

[1]
Amirteymoori, E.; Khezri, A.; Dayani, O.; Mohammadabadi, M.; Khorasani, S.; Mousaie, A.; Kazemi-Bonchenari, M. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa population in growing lambs. Ital. J. Anim. Sci., 2021, 20(1), 1506-1517.
[http://dx.doi.org/10.1080/1828051X.2021.1984324]
[2]
Hajalizadeh, Z.; Dayani, O.; Khezri, A.; Tahmasbi, R.; Mohammadabadi, M.R. The effect of adding fennel (Foeniculum vulgare) seed powder to the diet of fattening lambs on performance, carcass characteristics and liver enzymes. Small Rumin. Res., 2019, 175, 72-77.
[http://dx.doi.org/10.1016/j.smallrumres.2019.04.011]
[3]
Jafari Ahmadabadi, S.A.; Askari-Hemmat, H.; Mohammadabadi, M.; Asadi Fouzi, M.; Mansouri, M. The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. J. Agric. Biotechnol., 2023, 15(1), 217-234.
[4]
Safaei, S.M.H.; Dadpasand, M.; Mohammadabadi, M.; Atashi, H.; Stavetska, R.; Klopenko, N.; Kalashnyk, O. An Origanum majorana leaf diet influences myogenin gene expression, performance, and carcass characteristics in lambs. Animals, 2022, 13(1), 14.
[http://dx.doi.org/10.3390/ani13010014] [PMID: 36611623]
[5]
Safaei, SM; Mohammadabadi, M; Moradi, B; Kalashnyk, O; Klopenko, N; Babenko, O; Borshch, OO; Afanasenko, V Role of fennel (Foeniculum vulgare) seed powder in increasing testosterone and IGF1 gene expression in the testis of lamb. Gene Expression. , 2023.
[6]
Shahsavari, M.; Mohammadabadi, M.; Khezri, A.; Borshch, O.; Babenko, O.; Kalashnyk, O.; Afanasenko, V.; Kondratiuk, V. Effect of fennel ( Foeniculum Vulgare ) seed powder consumption on insulin-like growth factor 1 gene expression in the liver tissue of growing lambs. Gene Expr., 2022, 000(000), 000.
[http://dx.doi.org/10.14218/GE.2022.00017]
[7]
Shokri, S.; Khezri, A.; Mohammadabadi, M.; Kheyrodin, H. The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed. J. Agric. Biotechnol., 2023, 15(2), 217-236.
[8]
Vahabzadeh, M.; Chamani, M.; Dayani, O.; Sadeghi, A.A.; Mohammadabadi, M.R. Effect of Origanum majorana leaf (Sweet marjoram) feeding on lamb’s growth, carcass characteristics and blood biochemical parameters. Small Rumin. Res., 2020, 192, 106233.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106233]
[9]
Sharma, N.; Dubey, W. History and taxonomy of Aegle marmelos: a review. Int. J. Pure Appl. Biosci.., 2013, 1(6), 7-13.
[10]
Jillelamudi, S; Ankem, NB; Jada, NL Abortifacient activity of Aegle marmelos and Laurus nobilis leaf extracts. Pre-Clin. Res., 2023, 5(1)
[11]
Mammen, D.; Mammen, D. Phenolic principles and pharmacognostic studies of fruits of Aegle marmelos. J. Pharmacogn. Phytochem., 2023, 12(5), 422-427.
[12]
Khanal, A.; Dall’acqua, S.; Adhikari, R. Bael (Aegle marmelos), an underutilized fruit with enormous potential to be developed as a functional food product: A review. J. Food Process. Preserv., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/8863630]
[13]
Baliga, M.S.; Thilakchand, K.R.; Rai, M.P.; Rao, S.; Venkatesh, P. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr. Cancer Ther., 2013, 12(3), 187-196.
[http://dx.doi.org/10.1177/1534735412451320] [PMID: 23089553]
[14]
Mali, S.S.; Dhumal, R.L.; Havaldar, V.D.; Shinde, S.S.; Jadhav, N.Y.; Gaikwad, B.S. A systematic review on Aegle marmelos (Bael). Res. J. pharmacogn. phytochem., 2020, 12(1), 31-36.
[http://dx.doi.org/10.5958/0975-4385.2020.00007.2]
[15]
Singh, A.K.; Singh, S.; Saroj, P.L.; Singh, G.P. Improvement and production technology of bael (Aegle marmelos) in India — A review. Curr. Hortic., 2021, 9(1), 3-14.
[http://dx.doi.org/10.5958/2455-7560.2021.00001.7]
[16]
Dutt, R.; Dalal, J.; Singh, G.; Gahalot, S.C.; Chandolia, R.K. Medicinal uses of Murraya koenigii and Aegle marmelos for fertility augmentation in animals: A review. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(9), 645-657.
[http://dx.doi.org/10.20546/ijcmas.2018.709.077]
[17]
Kari, Z.A.; Wee, W.; Hamid, N.K.A.; Mat, K.; Rusli, N.D.; Khalid, H.N.M.; Sukri, S.A.M.; Harun, H.C.; Dawood, M.A.O.; Hakim, A.H.; Khoo, M.I.; Abd El-Razek, I.M.; Goh, K.W.; Wei, L.S. Recent advances of phytobiotic utilization in carp farming: A review. Aquacult. Nutr., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/7626675]
[18]
Kikusato, M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Animal Bioscience, 2021, 34(3), 345-353.
[http://dx.doi.org/10.5713/ab.20.0842] [PMID: 33705621]
[19]
Abd El-Ghany, W.A.; Yazar Soyadı, Y.A. Phytobiotics in poultry industry as growth promoters, antimicrobials and immunomodulators–A review. J. World's Poult. Res., 2020, 10(4), 571-579.
[http://dx.doi.org/10.36380/jwpr.2020.65]
[20]
Sharma, A.K.; Sharma, M.K. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol. Adv., 2009, 27(6), 811-832.
[http://dx.doi.org/10.1016/j.biotechadv.2009.06.004] [PMID: 19576278]
[21]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[22]
Waller, P.J. From discovery to development: Current industry perspectives for the development of novel methods of helminth control in livestock. Vet. Parasitol., 2006, 139(1-3), 1-14.
[http://dx.doi.org/10.1016/j.vetpar.2006.02.036] [PMID: 16675128]
[23]
Talalay, P.; Talalay, P. The importance of using scientific principles in the development of medicinal agents from plants. Acad. Med., 2001, 76(3), 238-247.
[http://dx.doi.org/10.1097/00001888-200103000-00010] [PMID: 11242573]
[24]
Mazid, M; Khan, TA; Mohammad, F Medicinal plants of rural India: A review of use by Indian folks. Indo-Glob. Res. J. Pharm. Sci., 2012, 2(3), 286-304.
[http://dx.doi.org/10.35652/IGJPS.2012.35]
[25]
Puvača, N.; Tufarelli, V.; Giannenas, I. Essential oils in broiler chicken production, immunity and meat quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture, 2022, 12(6), 874.
[http://dx.doi.org/10.3390/agriculture12060874]
[26]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[27]
Challis, G.L. Genome mining for novel natural product discovery. J. Med. Chem., 2008, 51(9), 2618-2628.
[http://dx.doi.org/10.1021/jm700948z] [PMID: 18393407]
[28]
Haque, M.H.; Sarker, S.; Islam, M.S.; Islam, M.A.; Karim, M.R.; Kayesh, M.E.H.; Shiddiky, M.J.A.; Anwer, M.S. Sustainable antibiotic-free broiler meat production: Current trends, challenges, and possibilities in a developing country perspective. Biology, 2020, 9(11), 411.
[http://dx.doi.org/10.3390/biology9110411] [PMID: 33238534]
[29]
Hardwicke, C.J. The world health organization and the pharmaceutical industry. common areas of interest and differing views. Adverse Drug React. Toxicol. Rev., 2002, 21(1-2), 51-99.
[http://dx.doi.org/10.1007/BF03256183] [PMID: 12140907]
[30]
Lemaux, P.G. Genetically engineered plants and foods: A scientist’s analysis of the issues (Part I). Annu. Rev. Plant Biol., 2008, 59(1), 771-812.
[http://dx.doi.org/10.1146/annurev.arplant.58.032806.103840] [PMID: 18284373]
[31]
Yue, W.; Ming, Q.; Lin, B.; Rahman, K.; Zheng, C.J.; Han, T.; Qin, L. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol., 2016, 36(2), 215-232.
[http://dx.doi.org/10.3109/07388551.2014.923986] [PMID: 24963701]
[32]
Mohammadinejad, R.; Shavandi, A.; Raie, D.S.; Sangeetha, J.; Soleimani, M.; Shokrian Hajibehzad, S.; Thangadurai, D.; Hospet, R.; Popoola, J.O.; Arzani, A.; Gómez-Lim, M.A.; Iravani, S.; Varma, R.S. Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem., 2019, 21(8), 1845-1865.
[http://dx.doi.org/10.1039/C9GC00335E]
[33]
Vaghela, N.; Gohel, S. Medicinal plant‐associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J. Basic Microbiol., 2023, 63(3-4), 308-325.
[http://dx.doi.org/10.1002/jobm.202200361] [PMID: 36336634]
[34]
Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther., 2020, 42(9), 1649-1658.
[http://dx.doi.org/10.1016/j.clinthera.2020.07.004] [PMID: 32819723]
[35]
Asaduzzaman, M.; Uddin, M.J.; Kader, M.A.; Alam, A.H.M.K.; Rahman, A.A.; Rashid, M.; Kato, K.; Tanaka, T.; Takeda, M.; Sadik, G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: Implications for the treatment of Alzheimer’s disease. Psychogeriatrics, 2014, 14(1), 1-10.
[http://dx.doi.org/10.1111/psyg.12031] [PMID: 24646308]
[36]
Singh, A.K.; Singh, S.; Saroj, P.L.; Krishna, H.; Singh, R.S.; Singh, R.K. Research status of bael (Aegle marmelos) in India: A review. Indian J. Agric. Sci., 2019, 89(10), 1563-1571.
[http://dx.doi.org/10.56093/ijas.v89i10.94576]
[37]
Sinha, S.; Ghosh, A.K. Aegle marmelos-gift of nature to the mankind. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6(6), 1993-1995.
[http://dx.doi.org/10.22214/ijraset.2018.6297]
[38]
Sharma, V.; Sharma, R.; Gautam, D.; Kuca, K.; Nepovimova, E.; Martins, N. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J. Clin. Med., 2020, 9(4), 1176.
[http://dx.doi.org/10.3390/jcm9041176] [PMID: 32325895]
[39]
Sathwane, M.; Deshmukh, R.K.; Gaikwad, K.K.; Maji, P.K. Valorization of nanocellulose from bael (Aegle marmelos correa) fruit waste shells: Surface chemistry and morphological analysis. Bioresour. Technol. Rep., 2023, 101727.
[40]
Aung, H.T.; Zar, T.; Sein, M.M.; Komori, Y.; Vidari, G.; Takaya, Y. Constituents of Aegle marmelos from Myanmar. J. Asian Nat. Prod. Res., 2021, 23(9), 844-850.
[http://dx.doi.org/10.1080/10286020.2020.1804378] [PMID: 32851864]
[41]
Akhouri, V.; Kumari, M.; Kumar, A. Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats. Sci. Rep., 2020, 10(1), 18016.
[http://dx.doi.org/10.1038/s41598-020-72935-2] [PMID: 33093498]
[42]
Sampath, G.; Govarthanan, M.; Rameshkumar, N.; Vo, D.V.N.; Krishnan, M.; Sivasankar, P.; Kayalvizhi, N. Eco-friendly biosynthesis metallic silver nanoparticles using Aegle marmelos (Indian bael) and its clinical and environmental applications. Appl. Nanosci., 2023, 13(1), 663-674.
[http://dx.doi.org/10.1007/s13204-021-01883-8]
[43]
Meena, V.S.; Gora, J.S.; Singh, A.; Ram, C.; Meena, N.K.; Pratibha; Rouphael, Y.; Basile, B.; Kumar, P. Underutilized fruit crops of indian arid and semi-arid regions: Importance, conservation and utilization strategies. Horticulturae, 2022, 8(2), 171.
[http://dx.doi.org/10.3390/horticulturae8020171]
[44]
Saroj, P.L.; Kumar, K.; Kumawat, K.L.; Sarolia, D.K.; Meena, R.K. Significance of pollinizers in arid fruit culture: A review. Progress. Hortic., 2021, 53(2), 123-141.
[http://dx.doi.org/10.5958/2249-5258.2021.00022.1]
[45]
Bayer, R.J.; Mabberley, D.J.; Morton, C.; Miller, C.H.; Sharma, I.K.; Pfeil, B.E.; Rich, S.; Hitchcock, R.; Sykes, S. A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences. Am. J. Bot., 2009, 96(3), 668-685.
[http://dx.doi.org/10.3732/ajb.0800341] [PMID: 21628223]
[46]
Pathirana, C.K.; Madhujith, T.; Eeswara, J. Bael (Aegle marmelos L. Corrêa), a medicinal tree with immense economic potentials. Adv. Agric., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8814018]
[47]
Sarkar, T.; Salauddin, M.; Chakraborty, R. In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. J. Agric. Food Res., 2020, 2, 100081.
[http://dx.doi.org/10.1016/j.jafr.2020.100081]
[48]
Mathai, R.V.; Mitra, J.C.; Sar, S.K.; Jindal, M.K. Adsorption of Chromium (VI) from aqueous phase using Aegle marmelos leaves: Kinetics, isotherm and thermodynamic studies. Chem. Data Collect., 2022, 39, 100871.
[http://dx.doi.org/10.1016/j.cdc.2022.100871]
[49]
Sharma, N.; Radha; Kumar, M.; Zhang, B.; Kumari, N.; Singh, D.; Chandran, D.; Sarkar, T.; Dhumal, S.; Sheri, V.; Dey, A.; Rajalingam, S.; Viswanathan, S.; Mohankumar, P.; Vishvanathan, M.; Sathyaseelan, S.K.; Lorenzo, J.M. Aegle marmelos (L.) Correa: An underutilized fruit with high nutraceutical values: A review. Int. J. Mol. Sci., 2022, 23(18), 10889.
[http://dx.doi.org/10.3390/ijms231810889] [PMID: 36142805]
[50]
Bhardwaj, R.L.; Nandal, U. Nutritional and therapeutic potential of bael ( Aegle marmelos Corr.) fruit juice: A review. Nutr. Food Sci., 2015, 45(6), 895-919.
[http://dx.doi.org/10.1108/NFS-05-2015-0058]
[51]
Kaur, A.; Kalia, M. Physico chemical analysis of bael (Aegle marmelos) fruit pulp, seed and pericarp. Chem. sci. rev. lett., 2017, 6(22), 1213-1218.
[52]
Lakht-e-Zehra, A.; Dar, N.G.; Saleem, N.; Soomro, U.A.; Afzal, W.; Naqvi, B.; Jamil, K. Nutritional exploration of leaves, seed and fruit of bael (Aegle marmelos L.) grown in Karachi region. Pak. J. Biochem. Mol. Biol., 2015, 48(3), 61-65.
[53]
Bhardwaj, R.L. Role of bael fruit juice in nutritional security of Sirohi tribals. Benchmark survey report of sirohi tribals. In: Krishi Vigyan Kendra; AU, Jodhpur, 2014; pp. 11-37.
[54]
Anurag, S.; H, K.S.; Pragati, K.; Ashutosh, U. Bael (Aegle marmelos Correa) products processing: A review. Afr. J. Food Sci., 2014, 8(5), 204-215.
[http://dx.doi.org/10.5897/AJFS2013.1119]
[55]
Kumar, K.S.; Umadevi, M.; Bhowmik, D.; Singh, D.M.; Dutta, A.S. Recent trends in medicinal uses and health benefits of Indian traditional herbs Aegle marmelos. Pharma Innov., 2012, 1(4)
[56]
Gopalan, C; Rama Sastri, BV; Balasubramanian, SC Nutritive value of Indian foods., 1989, , 59-93.
[57]
Mala, R. Nutrient content of important fruit trees from arid zone of Rajasthan. J. Hortic. For., 2009, 1(7), 103-108.
[58]
Sharma, G.N.; Dubey, S.K.; Sharma, P.; Sati, N. Medicinal values of bael (Aegle marmelos)(L.) Corr.: A review. Int J Curr Pharm Rev Res., 2011, 2(1), 12-22.
[59]
Singh, K.K.; Bairwa, B.; Mahour, R.K.; Pareek, V. Aegle marmelos (Bael) benefit for health: A review. Curr. res. agric. Farming, 2021, 2(1), 17-20.
[http://dx.doi.org/10.18782/2582-7146.129]
[60]
De Silva, N.D.; Attanayake, A.P.; Karunaratne, D.N.; Arawwawala, L.D.A.M.; Pamunuwa, G.K. Bael ( Aegle marmelos L. Correa) fruit extracts encapsulated alginate nanoparticles as a potential dietary supplement with improved bioactivities. J. Food Sci., 2023, 88(12), 4942-4961.
[http://dx.doi.org/10.1111/1750-3841.16827] [PMID: 37960942]
[61]
Choudhary, Y; Saxena, A; Kumar, Y; Kumar, S; Pratap, V Phytochemistry, pharmacological and traditional uses of Aegle marmelos. J Pharm Biol Sci, 2017, 20, 27-33.
[62]
Yogesh, G.; Jha, A.K. Ethnobotanical studies of sacred Aegle marmelos plant. Int. J. Adv. Res. Ideas Innov. Technol., 2017, 3, 498-501.
[63]
Singh, R.; Singh, A.; Babu, N. Ethno-medicinal and pharmacological activities of Aegle marmelos (Linn.) Corr: A review. Pharma Innov. J., 2019, 8(6), 176-181.
[64]
Yadav, N.P.; Chanotia, C.S. Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. Pharm. Rev., 2009, 11, 144-150.
[65]
Hema, C.G.; Lalithakumari, K. Screening of pharmacological actions of Aegle marmelos. Indian J. Pharmacol., 1988, 20(2), 80.
[66]
Fuad, M.T. The effect of Aegle marmelos shell particles volume fraction on hardness, toughness, and wear rate of epoxy matrix composites as motorcycle brake pads. J. Mech. Eng. Sci., 2023, 9338-9348.
[67]
Laphookhieo, S.; Phungpanya, C.; Tantapakul, C.; Techa, S.; Tha-in, S.; Narmdorkmai, W. Chemical constituents from Aegle marmelos. J. Braz. Chem. Soc., 2012, 22, 176-178.
[http://dx.doi.org/10.1590/S0103-50532011000100024]
[68]
Rajeshwari, S.; Balakrishnan, A.; Thenmozhi, M.; Venckatesh, R. Preliminary phytochemical analysis of Aegle marmelos, Ruta graveolens, Opuntia dellini, Euphorbia royleana and Euphorbia antiquorum. Int J Pharm Sci Res., 2011, 2(1), 146-150.
[69]
Jatav, S.; Pandey, N.; Dwivedi, P.; Bansal, R.; Ahluwalia, V.; Tiwari, V.K.; Mishra, B.B. Isolation of a new flavonoid and waste to wealth recovery of 6- O -Ascorbyl esters from seeds of Aegle marmelos (family- rutaceae). Nat. Prod. Res., 2019, 33(15), 2236-2242.
[http://dx.doi.org/10.1080/14786419.2018.1499630] [PMID: 30067085]
[70]
Hiremath, G.I.; Ahn, Y.J.; Kim, S.I.I. Insecticidal activity of Indian plant extracts against Nilaparvata lugens (Homoptera: Delphacidae). Appl. Entomol. Zool., 1997, 32(1), 159-166.
[http://dx.doi.org/10.1303/aez.32.159]
[71]
Raja, W.W.; Khan, S.H. Estimation of some phytoconstituents and evaluation of antioxidant activity in Aegle marmelos leaves extract. J. Pharmacogn. Phytochem., 2017, 6(1), 37-40.
[72]
Ahmad, W.; Amir, M.; Ahmad, A.; Ali, A.; Ali, A.; Wahab, S.; Barkat, H.A.; Ansari, M.A.; Sarafroz, M.; Ahmad, A.; Barkat, M.A.; Alam, P. Aegle marmelos leaf extract phytochemical analysis, cytotoxicity, in vitro antioxidant and antidiabetic activities. Plants, 2021, 10(12), 2573.
[http://dx.doi.org/10.3390/plants10122573] [PMID: 34961044]
[73]
Chaubey, A.; Dubey, A.K. Chemistry and antioxidant potential of phytoconstituents from Aegle marmelos Fruit-Shell. Curr. Drug Metab., 2020, 21(7), 525-533.
[http://dx.doi.org/10.2174/1389200221666200711161056] [PMID: 32651962]
[74]
Mujeeb, F; Bajpai, P; Pathak, N Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos Biomed Res. Int., 2014, 2014
[75]
Venthodika, A.; Chhikara, N.; Mann, S.; Garg, M.K.; Sofi, S.A.; Panghal, A. Bioactive compounds ofAEGLE MARMELOS L., medicinal values and its food APPLICATIONS: A critical review. Phytother. Res., 2021, 35(4), 1887-1907.
[http://dx.doi.org/10.1002/ptr.6934] [PMID: 33159390]
[76]
Chaturvedi, K.; Kumara, U.; Sane, A.; Singh, P.; Kumar, P.; Tripathi, P.C. Exploring the genetic diversity of Aegle marmelos (L.) Correa populations in India. Plant Genet. Resour., 2023, 21(2), 107-114.
[http://dx.doi.org/10.1017/S1479262123000485]
[77]
Iqbal, K.; Wang, X.; Blanchard, J.; Liu, F.; Gong, C.X.; Grundke-Iqbal, I. Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial. Biochem. Soc. Trans., 2010, 38(4), 962-966.
[http://dx.doi.org/10.1042/BST0380962] [PMID: 20658985]
[78]
Gautam, M.; Ramanathan, M. Ameliorative potential of flavonoids of Aegle marmelos in vincristine-induced neuropathic pain and associated excitotoxicity. Nutr. Neurosci., 2021, 24(4), 296-306.
[http://dx.doi.org/10.1080/1028415X.2019.1627768] [PMID: 31221045]
[79]
Kudo, T.; Tanii, H.; Takeda, M. Neurodegerative dementias involving aberrant protein aggregation. Psychogeriatrics, 2007, 7(3), 114-117.
[http://dx.doi.org/10.1111/j.1479-8301.2007.00213.x]
[80]
Kadowaki, H.; Nishitoh, H.; Urano, F.; Sadamitsu, C.; Matsuzawa, A.; Takeda, K.; Masutani, H.; Yodoi, J.; Urano, Y.; Nagano, T.; Ichijo, H. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ., 2005, 12(1), 19-24.
[http://dx.doi.org/10.1038/sj.cdd.4401528] [PMID: 15592360]
[81]
Sponne, I.; Fifre, A.; Drouet, B.; Klein, C.; Koziel, V.; Pinçon-Raymond, M.; Olivier, J.L.; Chambaz, J.; Pillot, T. Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J. Biol. Chem., 2003, 278(5), 3437-3445.
[http://dx.doi.org/10.1074/jbc.M206745200] [PMID: 12435748]
[82]
Arlt, S.; Beisiegel, U.; Kontush, A. Lipid peroxidation in neurodegeneration: New insights into Alzheimerʼs disease. Curr. Opin. Lipidol., 2002, 13(3), 289-294.
[http://dx.doi.org/10.1097/00041433-200206000-00009] [PMID: 12045399]
[83]
Mark, R.J.; Lovell, M.A.; Markesbery, W.R.; Uchida, K.; Mattson, M.P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem., 1997, 68(1), 255-264.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010255.x] [PMID: 8978733]
[84]
Niki, E. On the development of the thiobarbituric acid test for lipid oxidation. Arch. Biochem. Biophys., 2022, 109188
[http://dx.doi.org/10.1016/j.abb.2022.109188] [PMID: 35304122]
[85]
Chakraborty, R.; Vijay Kumar, M.J.; Clement, J.P. Critical aspects of neurodevelopment. Neurobiol. Learn. Mem., 2021, 180, 107415.
[http://dx.doi.org/10.1016/j.nlm.2021.107415] [PMID: 33647449]
[86]
Wat, R.; Mammi, M.; Paredes, J.; Haines, J.; Alasmari, M.; Liew, A.; Lu, V.M.; Arnaout, O.; Smith, T.R.; Gormley, W.B.; Aglio, L.S.; Mekary, R.A.; Zaidi, H. The effectiveness of antiepileptic medications as prophylaxis of early seizure in patients with traumatic brain injury compared with placebo or no treatment: a systematic review and meta-analysis. World Neurosurg., 2019, 122, 433-440.
[http://dx.doi.org/10.1016/j.wneu.2018.11.076] [PMID: 30465951]
[87]
Keowkase, R; Kijmankongkul, N; Sangtian, W; Poomborplab, S; Santa-ardharnpreecha, C; Weerapreeyakul, N; Sitthithaworn, W Protective effect and mechanism of fruit extract of Aegle marmelos against amyloid-β toxicity in a transgenic Caenorhabditis elegans. Nat. Prod. Commun., 2020, 15(7)
[http://dx.doi.org/10.1177/1934578X20933511]
[88]
Ma, Y.; Yang, M.; Li, X.; Yue, J.; Chen, J.; Yang, M.; Huang, X.; Zhu, L.; Hong, F.; Yang, S. Therapeutic effects of natural drugs on Alzheimer’s disease. Front. Pharmacol., 2019, 10, 1355.
[http://dx.doi.org/10.3389/fphar.2019.01355] [PMID: 31866858]
[89]
Mairuae, N.; Buranrat, B.; Yannasithinon, S.; Cheepsunthorn, P. Antioxidant and anti-inflammatory effects of Aegle marmelos fruit and Moringa oleifera leaf extracts on lipopolysaccharide-stimulated BV2 microglial cells. Trop. J. Pharm. Res., 2023, 22(6), 1247-1254.
[90]
Fawzi Mahomoodally, M.; Mollica, A.; Stefanucci, A.; Zakariyyah Aumeeruddy, M.; Poorneeka, R.; Zengin, G. Volatile components, pharmacological profile, and computational studies of essential oil from Aegle marmelos (Bael) leaves: A functional approach. Ind. Crops Prod., 2018, 126, 13-21.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.054]
[91]
Gavimath, C.C.; Chavan, A.; Lakshmikantha, R.Y.; Satwadi, P.R. Evaluation of nootropic activity of Aegle marmelos extract using different experimental models in rats. Int. J. Pharm. Chem. Biol. Sci., 2012, 2(4), 538-544.
[92]
Wang, S.; Xiang, R.; Kong, L.; Zhang, Z.; Lu, J.; Liu, X.; Ma, W. The complete chloroplast genome of Aegle marmelos and its phylogenetic analysis. Mitochondrial DNA B Resour., 2023, 8(7), 787-790.
[http://dx.doi.org/10.1080/23802359.2023.2238934] [PMID: 37521904]
[93]
Dhivya, P.S.; Sobiya, M.; Selvamani, P.; Latha, S. An approach to Alzheimer’s disease treatment with cholinesterase inhibitory activity from various plant species. Int. J. Pharm. Tech. Res., 2014, 6(5), 1450-1467.
[94]
Manandhar, B.; Paudel, K.R.; Sharma, B.; Karki, R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J. Integr. Med., 2018, 16(3), 153-163.
[http://dx.doi.org/10.1016/j.joim.2018.04.007] [PMID: 29709412]
[95]
Uddin, M.S.; Mamun, A.A.; Hossain, M.S.; Akter, F.; Iqbal, M.A.; Asaduzzaman, M. Exploring the effect of Phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Promising natural gift for the mitigation of Alzheimer’s disease. Ann. Neurosci., 2016, 23(4), 218-229.
[http://dx.doi.org/10.1159/000449482] [PMID: 27780989]
[96]
Mettupalayam Kaliyannan Sundaramoorthy, P; Kilavan Packiam, K. In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides (Linn.) Linn. Leaf extract: A plant from Ayurveda recognized as Dasapushpam for the management of Alzheimer’s disease and diabetes mellitus BMC complement. med. ther., 2020, 20(1), 1-2.
[97]
Singh, A.; Agarwal, S.; Singh, S. Age related neurodegenerative Alzheimer’s disease: Usage of traditional herbs in therapeutics. Neurosci. Lett., 2020, 717, 134679.
[http://dx.doi.org/10.1016/j.neulet.2019.134679] [PMID: 31816333]
[98]
Mani, V.; Ramasamy, K.; Ahmad, A.; Parle, M.; Shah, S.A.A.; Majeed, A.B.A. Protective effects of total alkaloidal extract from Murraya koenigii leaves on experimentally induced dementia. Food Chem. Toxicol., 2012, 50(3-4), 1036-1044.
[http://dx.doi.org/10.1016/j.fct.2011.11.037] [PMID: 22142688]
[99]
Ali Reza, A.S.M.; Hossain, M.S.; Akhter, S.; Rahman, M.R.; Nasrin, M.S.; Uddin, M.J.; Sadik, G.; Khurshid Alam, A.H.M. In vitro antioxidant and cholinesterase inhibitory activities of Elatostema papillosum leaves and correlation with their phytochemical profiles: A study relevant to the treatment of Alzheimer’s disease. BMC Complement. Altern. Med., 2018, 18(1), 123.
[http://dx.doi.org/10.1186/s12906-018-2182-0] [PMID: 29622019]
[100]
Veer, B.; Singh, R. Phytochemical screening and antioxidant activities of Aegle marmelos leaves. Anal. Chem. Lett., 2019, 9(4), 478-485.
[http://dx.doi.org/10.1080/22297928.2019.1657946]
[101]
Nunes, R.; Carvalho, I.S. Potential application of Arbutus unedo L. leaf, fruit and flower extracts in the treatment of Alzheimer’s and Parkinson’s diseases; RICARDO JORGE DOS SANTOS NUNES, 2017, p. 193.
[102]
Chaudhary, S.; Goutam, S.P.; Yadav, A.K.; Pandey, G. Green synthesis of Fe doped TiO2 nanoparticles using Aegle marmelos leaves extract for the photocatalytic degradation of rhodamine B dye. Proc. Natl. Acad. Sci., 2023, p. 1.
[103]
Ghosh, S.; Kumar, A.; Sachan, N.; Aggarwal, I.; Chandra, P. GABAergic and serotonergic system mediated psychoneuropharmacological activities of essential oil from the leaves of Aegle marmelos : An in vivo and in silico approach. J. Essent. Oil-Bear. Plants, 2020, 23(6), 1265-1282.
[http://dx.doi.org/10.1080/0972060X.2020.1867008]
[104]
Reza, A.A.; Nasrin, M.S.; Alam, A.K. Phytochemicals, antioxidants, and cholinesterase inhibitory profiles of Elatostema Papillosum leaves: An alternative approach for management of Alzheimer’s disease. J. Neurol. Neuromedicine, 2018, 3(5)
[105]
Yogesh, M.; Kumar, A.K. Phytochemicals and phytotherapeutic studies on different parts of Aegle marmelos: A critical overview. Res. J. Biotechnol., 2024, 19, 1.
[106]
Potbhare, M.S.; Barik, R.; Khobragade, D.S. Management of Alzheimer’s disease: A review of herbal drugs having potential pharmacological and therapeutic activity. J. Young Pharm., 2023, 15(1), 13-30.
[http://dx.doi.org/10.5530/097515050344]
[107]
Wojtunik-Kulesza, K.A.; Oniszczuk, A.; Oniszczuk, T.; Waksmundzka-Hajnos, M. The influence of common free radicals and antioxidants on development of Alzheimer’s disease. Biomed. Pharmacother., 2016, 78, 39-49.
[http://dx.doi.org/10.1016/j.biopha.2015.12.024] [PMID: 26898423]
[108]
Hupparage, V.B.; Rasal, V.P.; Patil, V.S.; Patil, P.P.; Mulange, S.G.; Malgi, A.P.; Patil, S.A.; Karade, A.R. Ameliorative effect of Amaranthus tricolor L. leaves on scopolamine-induced cognitive dysfunction and oxidative stress in rats. J. Appl. Pharm. Sci., 2020, 10(10), 111-120.
[109]
Javed, H.; Nagoor Meeran, M.F.; Azimullah, S.; Adem, A.; Sadek, B.; Ojha, S.K. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front. Pharmacol., 2019, 9, 1555.
[http://dx.doi.org/10.3389/fphar.2018.01555] [PMID: 30941047]
[110]
Adavala, P.D.; Musukula, Y.R.; Puchchakayala, G. Neuroprotective effect of Aegle marmelos leaf extract in scopolamine induced cognitive impairment and oxidative stress in mice. Glob. J. Pharmacol., 2016, 10(2), 45-53.
[111]
Omoboyowa, D.A.; Balogun, T.A.; Omomule, O.M.; Saibu, O.A. Identification of terpenoids from Abrus precatorius against Parkinson’s disease proteins using in silico approach. Bioinform. Biol. Insights, 2021, 15
[http://dx.doi.org/10.1177/11779322211050757] [PMID: 34707350]
[112]
Bhattacharya, R.; Sourirajan, A.; Sharma, P.; Kumar, A.; Upadhyay, N.K.; Shukla, R.K.; Dev, K.; Krishnakumar, B.; Singh, M.; Bose, D. Bioenhancer potential of Aegle marmelos (L.) Corrêa essential oil with antifungal drugs and its mode of action against Candida albicans. Biocatal. Agric. Biotechnol., 2023, 48, 102647.
[http://dx.doi.org/10.1016/j.bcab.2023.102647]
[113]
Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Boyunegmez Tumer, T.; Catarina Moreira, A.; Sharopov, F.; Martorell, M.; Martins, N.; Cho, W.C.; Calina, D.; Sharifi-Rad, J. Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J. Clin. Med., 2020, 9(4), 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[114]
Pal, D; Lal, P. Medicinal plants against neurological viral diseases: Ethnopharmacology, chemistry, clinical, and preclinical studies. Anti-Viral Metabolites from Medicinal Plants, 2023, , 1-64.
[115]
Prasathkumar, M.; Anisha, S.; Dhrisya, C.; Becky, R.; Sadhasivam, S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review. Phytomedicine Plus, 2021, 1(2), 100029.
[http://dx.doi.org/10.1016/j.phyplu.2021.100029]
[116]
Sharma, M.; Awasthi, H.; Srivastava, D.; Fatima, Z.; Srivastava, V. Assessment of the impact of herbal drugs used in neurodegenerative disorders: A preclinical review. Curr. Tradit. Med., 2022, 8(6), 39-49.
[117]
Pratap, G.K.; Shantaram, M.; Raghavendra, H.L.; Kumar, S.; Harshini, V.K.; Poornima, D.V. A comprehensive analysis of wild edible fruits from the Rangayyanadurga four-horned antelope wildlife sanctuary. Biomedicine, 2023, 43(02), 545-553.
[118]
Ndam Ngoungoure, V.L.; Mfotie Njoya, E.; Ngamli Fewou, S.; Fils Ella, A.; McGaw, L.J.; Moundipa, P.F. Acetylcholinesterase inhibitory, anti-inflammatory and antioxidant properties of some Cameroonian medicinal plants used to treat some neurological disorders. Invest Med Chem Pharmacol., 2019, 2(2), 1-13.
[http://dx.doi.org/10.31183/imcp.2019.00033]
[119]
Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 16.
[http://dx.doi.org/10.1186/s43088-022-00196-1] [PMID: 35127957]
[120]
Sonibare, M.A.; Ayoola, I.O.; Elufioye, T.O. Antioxidant and acetylcholinesterase inhibitory activities of leaf extract and fractions of Albizia adianthifolia (Schumach) W.F. Wright. J. Basic Clin. Physiol. Pharmacol., 2017, 28(2), 143-148.
[http://dx.doi.org/10.1515/jbcpp-2015-0054] [PMID: 27658138]
[121]
Sriramcharan, P.; Natarajan, J.; Raman, R.; Nagaraju, G.; Justin, A.; Senthil, V. A review on green-synthesis of cerium oxide nanoparticles: focus on central nervous system disorders. Int. J. Appl. Pharm., 2022, 14(4), 94-102.
[http://dx.doi.org/10.22159/ijap.2022v14i4.44487]
[122]
Uddin, M.J.; Zidorn, C. Traditional herbal medicines against CNS disorders from Bangladesh. Nat. Prod. Bioprospect., 2020, 10(6), 377-410.
[http://dx.doi.org/10.1007/s13659-020-00269-7] [PMID: 33057963]
[123]
Susilowati, R.P.; Timotius, K.H.; Timotius, K.H. Larvicidal activity of ethyl acetate leaf extract of Aegle marmelos (L.) Correa against aedes aegypti. Hayati J. Biosci., 2023, 30(4), 643-652.
[http://dx.doi.org/10.4308/hjb.30.4.643-652]
[124]
Raju, S.; Paramasivam, B. A COMPLEX PROPORTIONAL ASSESSMENT and GRAY RELATIONAL ANALYSIS methodology hybrid optimization of compression ignition engine distinctiveness fuelled by dual feed stock pyrolysis of annona squamosa seed particles and Aegle marmelos pressed seed cake pyrolytic liquid‐diesel opus. Environ. Prog. Sustain. Energy, 2023, 42(5), e14135.
[http://dx.doi.org/10.1002/ep.14135]
[125]
Tiwari, R.; Mishra, S.; Danaboina, G.; Pratap Singh Jadaun, G.; Kalaivani, M.; Kalaiselvan, V.; Dhobi, M.; Raghuvanshi, R.S. Comprehensive chemo-profiling of coumarins enriched extract derived from Aegle marmelos (L.) Correa fruit pulp, as an anti-diabetic and anti-inflammatory agent. Saudi Pharm. J., 2023, 31(9), 101708.
[http://dx.doi.org/10.1016/j.jsps.2023.101708] [PMID: 37564748]
[126]
Edavan Puthallath, R.; Joseph, L.; Kademane, K.; Narayan Rao, S. Anticonvulsant activity of Nigella sativa, Aegle marmelos and Benincasa hispida in Pentylenetetrazole induced seizure in Swiss albino mice. Asian J. Med. Sci., 2016, 7(3), 97-102.
[http://dx.doi.org/10.3126/ajms.v7i3.13613]
[127]
Sankari, M.; Chitra, V.; Silambujanaki, P.; Raju, D. Anticonvulsant activity of ethanolic extract of Aegle marmelos (leaves) in mice. Int. J. Pharm. Tech. Res., 2010, 2(1), 640-643.
[128]
Sucher, N.J.; Carles, M.C. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav., 2015, 52(Pt B), 308-318.
[http://dx.doi.org/10.1016/j.yebeh.2015.05.012] [PMID: 26074183]
[129]
Dhankhar, S.; Ruhil, S.; Balhara, M.; Dhankhar, S.; Chhillar, A.K. Aegle marmelos (Linn.) Correa: A potential source of Phytomedicine. J. Med. Plants Res., 2011, 5(9), 1497-1507.
[130]
Debbarma, P.; Hazarika, T.K. Genetic diversity of Bael [Aegle marmelos (L.) Corr.] accessions from north-east India based on principal component and cluster analysis. Genet. Resour. Crop Evol., 2023, 1-25.
[131]
Tewari, B.B.; Gomatinayagam, S. Phytochemical analysis, antifungal and antibacterial screening of Aegle marmelos: A guyana floral extract. Curr. Appl. Sci. Technol., 2023, 42(35), 38-51.
[http://dx.doi.org/10.9734/cjast/2023/v42i354235]
[132]
Taqvi, S.I.H.; Rahman, A.; Versiani, M.A.; Imran, H.; Khatoon, A.; Sohail, T. Studies to determine antidiarrhoeal and spasmolytic activities of extract of Aegle marmelos. L fruit. Bangladesh J. Med. Sci., 2018, 17(2), 205-211.
[http://dx.doi.org/10.3329/bjms.v17i2.35872]
[133]
Gupta, E.; Shakyawar, S.; Sundaram, S. Therapeutic and nutraceutical potential of bioactive compounds in Aegle marmelos (L.): An overview. Curr. Nutr. Food Sci., 2019, 15(4), 306-317.
[http://dx.doi.org/10.2174/1573401314666180123151622]
[134]
Chouhan, A.S.; Raisinghani, R.; Khan, A.; Solanki, M.; Khan, A. Aegle marmelos (L.) Correa (Bael): A review on ethnobotanical, phytochemical and pharmacological profile. Int. J. All Res. Educ. Sci. Methods., 2021, 9(5), 3374-3384.
[135]
Logesh, R; Sathasivampillai, SV; Tiwari, AK; Devkota, HP Aegle marmelos (L.) correa. In: Himalayan Fruits and Berries; Academic Press, 2023; pp. 13-26.
[136]
Savita; Singh, A.P.; Singh, A.P. Aegle marmelos (L.) (Bael): A systematic review. J. Drug Deliv. Ther., 2021, 11(3-S), 131-136.
[http://dx.doi.org/10.22270/jddt.v11i3-S.4834]
[137]
Dutta, A.; Lal, N.; Naaz, M.; Ghosh, A.; Verma, R. Ethnological and Ethno-medicinal importance of Aegle marmelos (L.) Corr (Bael) among indigenous people of India. Am. j. ethnomed., 2014, 1(5), 290-312.
[138]
Sahoo, S. A review of some medicinal plants used for nervous disorders. J Med Plant., 2018, 6(3), 220-224.
[139]
Lomate, K.A.; Murthy, K.; Adak, V.S.; Shete, R.V.V. A review on phytochemical and pharmacological values of Aegle marmelos. J. Drug Deliv. Ther., 2021, 11(2-S), 162-166.
[http://dx.doi.org/10.22270/jddt.v11i2-S.4645]
[140]
Mahato, H; Kumar, B. Medicinal uses with immense economic potential and nutritional properties of Aegle marmelos: A concise review. In: Biocomposites; Books on Demand: Norderstedt: Germany, 2022; 133, .
[http://dx.doi.org/10.5772/intechopen.102876]
[141]
Kumawat, N.; Pantwalawalkar, J.; Vispute, Y.; Tade, R.; Nangare, S. An overview on phytochemistry, pharmacology, pharmaceutical, traditional and economical aspects of Aegle marmelos. Asian J. Pharm. Technol., 2021, 11(2), 166-174.
[http://dx.doi.org/10.52711/2231-5713.2021.00028]
[142]
Sekar, D.K.; Kumar, G.; Karthik, L.; Rao, K.B. A review on pharmacological and phytochemical properties of Aegle marmelos (L.) Corr. Serr.(Rutaceae). Asian J. Plant. Sci. Res., 2011, 1(2), 8-17.
[143]
Waheed, M.; Haq, S.M.; Arshad, F.; Jameel, M.A.; Siddiqui, M.H.; Bussmann, R.W.; Manshoor, N.; Alamri, S. Where will threatened Aegle marmelos L., a tree of the semi-arid region, go under climate change? implications for the reintroduction of the species. Land, 2023, 12(7), 1433.
[http://dx.doi.org/10.3390/land12071433]
[144]
Khanal, S.K.; Kiran Dawadi, K. Experimental investigation on phytochemical analysis and antibacterial activity of Aegle marmelos (Bael) plants. Turkish JAF Sci. Tech., 2020, 8(7), 1587-1592.
[http://dx.doi.org/10.24925/turjaf.v8i7.1587-1592.3469]
[145]
Bharadwaj, A.; Sharma, A.; Singh, T.; Pathak, D.; Virmani, T.; Kumar, G.; Sharma, A.; Alhalmi, A. Attenuation of strychnine-induced epilepsy employing Amaranthus viridis L. Leaves extract in experimental rats. Behav. Neurol., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/6684781] [PMID: 36959866]
[146]
Mukhopadhyay, M.K.; Banerjee, P.; Nath, D. Phytochemicals–biomolecules for prevention and treatment of human diseases-a review. IJSER, 2012, 3(7), 1-32.
[147]
Kothari, S.; Minda, M.; Tonpay, S.D. Anxiolytic and antidepressant activities of methanol extract of Aegle marmelos leaves in mice. Indian J. Physiol. Pharmacol., 2010, 54(4), 318-328.
[PMID: 21675029]
[148]
Sharma, A.; Singh, T.; Pathak, D.; Virmani, T.; Kumar, G.; Alhalmi, A. Antidepressive-like effect of Aegle marmelos leaf extract in chronic unpredictable mild stress-induced depression-like behaviour in rats. BioMed Res. Int., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/6479953] [PMID: 36593774]
[149]
Prasanna, G.S.; Lalremruta, V. Evaluation of protective effect of Aegle marmelos Corr. in an animal model of chronic fatigue syndrome. Indian J. Pharmacol., 2012, 44(3), 351-356.
[http://dx.doi.org/10.4103/0253-7613.96316] [PMID: 22701245]
[150]
Muhasaparur Ganesan, R.; Settu, D.K.; Murkunde, Y.; Duraipandian, C. Pharmacological and pharmacokinetic effect of a polyherbal combination with Withania somnifera (L.) Dunal for the management of anxiety. J. Ethnopharmacol., 2021, 265, 113337.
[http://dx.doi.org/10.1016/j.jep.2020.113337] [PMID: 32890709]
[151]
Bhatti, R.; Singh, J.; Nepali, K.; Ishar, M.P.S. Possible involvement of PPAR-γ in the anticonvulsant effect of Aegle marmelos (L.) Correa. Neurochem. Res., 2013, 38(8), 1624-1631.
[http://dx.doi.org/10.1007/s11064-013-1064-6] [PMID: 23645163]
[152]
Baranitharan, P.; Sriariyanun, M.; Babu, D.; Sakthivel, R. Dual feedstock pyrolysis of Aegle marmelos pressed seed cake and novel Annona squamosa seed particles: the effect of dual natural antioxidant on the oxidation stability of derived co-pyrolysis liquid-A green approach. Biofuels, 2023, 14(5), 485-497.
[http://dx.doi.org/10.1080/17597269.2022.2151402]
[153]
Sahoo, S. Some medicinal plants used for nervous disorders: A review. J. plant dev. sci., 2019, 11(3), 115-119.
[154]
Rahman, M.R.; Ali, M.; Sharif, M.; Tajmim, A. A review study on the traditional plants has potential antidepressant property. MOJ Cell Sci. Rep., 2017, 4(5), 138-145.
[http://dx.doi.org/10.15406/mojcsr.2017.04.00100]
[155]
Sharma, A.; Cardoso-Taketa, A.; García, G.; Villarreal, M.L. A systematic updated review of scientifically tested selected plants used for anxiety disorders. Botanics, 2012, 21-39.
[156]
Garg, P; Alambayan, J; Garg, V. Herbal approaches in the management of mental depression. CNS Neurol Disord Drug Targets., 2023, 22(1), 98-124.
[http://dx.doi.org/10.2174/1871527321666220128091408]
[157]
Deshmukh, N.N.; Vyas, J.V.; Paithankar, V.V.; Wankhade, A.M. A review on medicinal herbs with potential anti-depressant activities. Res. J. Pharmacogn. Phytochem., 2023, 15(3), 230-234.
[http://dx.doi.org/10.52711/0975-4385.2023.00036]
[158]
Srivastava, R.; Parambil, J.V. Evolution of extraction technique for the separation of bioactive compounds from Aegle marmelos. Sep. Sci. Technol., 2023, 58(4), 667-681.
[http://dx.doi.org/10.1080/01496395.2022.2151470]
[159]
Boublata, NI; Habbachi, W; Habbachi, S; Saadane, FZ; Benhissen, S; Tahraoui, A Effects of Cleome arabica aqueous extracts in Wistar Rat's behavior, biochemistry parameters and ACTH hormone. Curr Trends Nat. Sci., 2020, 9(18), 202-209.
[http://dx.doi.org/10.47068/ctns.2020.v9i18.028]
[160]
El Sayed, AM; Egbuna, C Fruits and nutraceuticals for the prevention and treatment of central nervous system disorders. In: Phytochemical Drug Discovery for Central Nervous System Disorders: Biochemistry and Therapeutic Effects; , 2023; pp. 273-289.
[http://dx.doi.org/10.1002/9781119794127.ch11]
[161]
Dey, S.R.; Dutta, S.; De, M. Neuro-steroid compound found by gc-ms analysis of the methanolic extract of the leaves of Aegle marmelos (l) corr. Int. J. Adv. Life Sci. Res., 2020, 3(4), 51-56.
[http://dx.doi.org/10.31632/ijalsr.20.v03i04.006]
[162]
Priya, M.S.R.; Subashini, R.; Kumar, P.S.; Deepadharshini, A.; Sree, M.M.; Murugan, K.; Sumathi, M. Assessment of in vitro biopotency of bioderived silver nanoparticles from Aegle marmelos (L.) fruit extract. Appl. Nanosci., 2023, 13(6), 3875-3885.
[http://dx.doi.org/10.1007/s13204-022-02619-y]
[163]
Monika, S.; Thirumal, M.; Kumar, P.R. Phytochemical and biological review of Aegle marmelos Linn. Future Sci. OA, 2023, 9(3), FSO849.
[http://dx.doi.org/10.2144/fsoa-2022-0068] [PMID: 37026028]
[164]
Gupta, V; Bhati, D; Khandelwal, T. Development and quality evaluation of bael (Aegle marmelos l.) based blended ready-to-serve. Sys Rev Pharm., 2023, 14(5)
[165]
Kujur, A.; Srivastava, N.; Jasrotia, N.; J, A. The role of medicinal plants in domestic animals and estrus induction with particular reference to Aegle marmelos and murraya koenigii. Anim. Reprod. Sci., 2022, 2(1), 56-62.
[http://dx.doi.org/10.48165/aru.2022.2102]
[166]
Doreddula, S.K.; Bonam, S.R.; Gaddam, D.P.; Desu, B.S.R.; Ramarao, N.; Pandy, V. Phytochemical analysis, antioxidant, antistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice. Sci. World J., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/519848] [PMID: 25401145]
[167]
Asif, H.M.; Hayee, A.; Aslam, M.R.; Ahmad, K.; Hashmi, A.S. Dose-dependent, antidepressant, and anxiolytic effects of a traditional medicinal plant for the management of behavioral dysfunctions in animal models. Dose Response, 2019, 17(4)
[http://dx.doi.org/10.1177/1559325819891262] [PMID: 31832027]
[168]
Baradaran Rahimi, V.; Askari, V.R. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β‐caryophyllene. Biofactors, 2022, 48(4), 857-882.
[http://dx.doi.org/10.1002/biof.1869] [PMID: 35648433]
[169]
Elkhayat, E.; Alorainy, M.; El-Ashmawy, I.; Fat’hi, S. Potential antidepressant constituents of Nigella sativa seeds. Pharmacogn. Mag., 2016, 12(45)(Suppl. 1), 27.
[http://dx.doi.org/10.4103/0973-1296.176118] [PMID: 27041854]
[170]
Pattanaik, S.; Sharma, D. Review on ayurvedic plant based compounds to cure the neurological disorders. Int J Mycobacteriol., 2015, 4(2), 116-123.
[PMID: 26972879]
[171]
Jain, S.; Dwivedi, J.; Jain, P.K.; Satpathy, S.; Patra, A. Medicinal plants for treatment of cancer: A brief review. Pharmacogn. J., 2016, 8(2), 87-102.
[http://dx.doi.org/10.5530/pj.2016.2.1]
[172]
Khan, A.; Pan, J.H.; Cho, S.; Lee, S.; Kim, Y.J.; Park, Y.H. Investigation of the hepatoprotective effect of Prunus mume Sieb. et Zucc extract in a mouse model of alcoholic liver injury through high-resolution metabolomics. J. Med. Food, 2017, 20(8), 734-743.
[http://dx.doi.org/10.1089/jmf.2016.3874] [PMID: 28650205]
[173]
Pawar, V.S.; Shivakumar, H. A current status of adaptogens: Natural remedy to stress. Asian Pac. J. Trop. Dis., 2012, 2, S480-S490.
[http://dx.doi.org/10.1016/S2222-1808(12)60207-2]
[174]
Ketcha Wanda, G.J.M.; Ngitedem, S.G.; Njamen, D. Botanicals for mood disorders with a focus on epilepsy. Epilepsy Behav., 2015, 52(Pt B), 319-328.
[http://dx.doi.org/10.1016/j.yebeh.2015.08.019] [PMID: 26409901]
[175]
Foyet, S.H.; Balmus, I.M.; Hervé Hervé, N.A.; Emmanuel, A.A.; Guenne, S.; Kiendrebéogo, M.; Ciobica, A. Ethnopharmacological approaches in mood and anxiety disorders. The relevance of the oxidative stress status. J. Complement. Integr. Med., 2017, 14(2), 20160059.
[http://dx.doi.org/10.1515/jcim-2016-0059] [PMID: 28284035]
[176]
Gupta, S.; Kashyap, P.; Asad, M.; Chattopadhyaya, I.; Dahiya, R. Anti-depressant activity of <i>Nyctanthes arbor-tristis</i> in mice. Bangladesh J. Pharmacol., 2016, 11(3), 634-645.
[http://dx.doi.org/10.3329/bjp.v11i3.26682]
[177]
Mohibullah; Pirzada, A.S.; Aschner, M.; Khan, H. Anxiolytic and antidepressant potential of extracts of Duchesnea Indica in animal models. PHYTOnutrients (Karachi, Pakistan), 2022, 1(1), 48-56.
[PMID: 36649439]
[178]
Sarma, P.; Borah, M.; Das, S. Evaluation of the protective effect of ethanolic extract of seed kernel of Caesalpinia bonducella Flem (EECB) on forced swimming-induced chronic fatigue syndrome in mice. Pharmacognosy Res., 2019, 11(3), 254.
[http://dx.doi.org/10.4103/pr.pr_172_18]
[179]
Mitra, A; Kumar, ST; Sachhidananda, U; Dipankar, B; Jayram, H Effect of Swarna Jibanti (Coelogyne cristata Lindley) in alleviation of chronic fatigue syndrome in aged Wistar rats. J Ayurveda Integr Med, 2017, 30, 1e6.
[180]
Chitra, B.; Ramaswamy, R.S. An overview on the role of Siddha practices in the prevention and management of age related neurodegenerative disorders with special reference to senile dementia. Indo Am. J. Pharm. Res., 2015, 5(4), 1510-1521.
[181]
Aggarwal, B.B.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadev, V.R.; Park, B.; Kim, J.H.; Gupta, S.C.; Phromnoi, K.; Sundaram, C.; Prasad, S.; Chaturvedi, M.M.; Sung, B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets, 2011, 12(11), 1595-1653.
[http://dx.doi.org/10.2174/138945011798109464] [PMID: 21561421]
[182]
Dwivedi, J; Sachan, P; Wal, P; Dwivedi, S; Sharma, MC; Rao, SP Detailed review on phytosomal formulation attenuating new pharmacological therapies. Adv. Trad. Med., 2023, 6, 1-26.
[http://dx.doi.org/10.1007/s13596-023-00712-3]
[183]
Sarma, P.; Borah, M.; Das, S. Evaluation of the effect of ethanolic extract of fruit pulp of Cassia fistula Linn. on forced swimming induced chronic fatigue syndrome in mice. Res. Pharm. Sci., 2015, 10(3), 206-213.
[PMID: 26600847]
[184]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32(4), S81-S118.
[185]
Wankhade, A.M.; Wanjari, M.M.; Dhuldhar, R.; Akhtar, U. Pharmacological Evaluation of Benincasa Hispida Cogn. Fruit on Chronic Foot Shock Induced Stress in Mice. Res. J. Pahrmacol. Pharmacodyn., 2023, 15(2), 49-54.
[http://dx.doi.org/10.52711/2321-5836.2023.00010]
[186]
Singh, PA; Singh, DA; Goel, RK Phytoflavonoids: Antiepileptics for the future. Channels , 2014, 3, 5.
[187]
Dey, A; Das, S; Mukherjee, A Possible natural therapeutics against schizophrenia and its acute and treatment resistant forms: A review. J. Biol. Act. Prod. Nat., 2016, 6(1), 1-24.
[http://dx.doi.org/10.1080/22311866.2016.1175318]
[188]
Yu, W.; Song, C.; Lei, Z.; Li, Y.; He, X.; Yu, J.; Yang, X. Anti-fatigue effect of traditional Chinese medicines: A review. Saudi Pharm. J., 2023, 31(4), 597-604.
[http://dx.doi.org/10.1016/j.jsps.2023.02.013] [PMID: 37063439]
[189]
Siriyong, T.; Subhadhirasakul, S.; Chanwanitsakul, S.; Phungtammasan, S.; Wichayaworanan, S.; Boonchu, K.; Phaenoi, N.; Siangchin, P.; Klaingkaew, K.; Voravuthikunchai, S.P. Therapeutic effects of traditional Thai herbal blood and wind tonic formulations for treatment of menopausal symptoms. Explore (NY), 2021, 17(5), 469-474.
[http://dx.doi.org/10.1016/j.explore.2021.06.002] [PMID: 34193369]
[190]
Mathur, D.; Goyal, K.; Koul, V.; Anand, A. The molecular links of re-emerging therapy: A review of evidence of Brahmi (Bacopa monniera). Front. Pharmacol., 2016, 7, 44.
[http://dx.doi.org/10.3389/fphar.2016.00044] [PMID: 26973531]