A Review on Patient-derived 3D Micro Cancer Approach for Drug Screen in Personalized Cancer Medicine

Page: [118 - 130] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Precision medicine in oncology aims to identify an individualized treatment plan based on genomic alterations in a patient’s tumor. It helps to select the most beneficial therapy for an individual patient. As it is now known that no patient's cancer is the same, and therefore, different patients may respond differently to conventional treatments, precision medicine, which replaces the one-size-fits-all approach, supports the development of tailored treatments for specific cancers of different patients. Patient-specific organoid or spheroid models as 3D cell culture models are very promising for predicting resistance to anti-cancer drugs and for identifying the most effective cancer therapy for high-throughput drug screening combined with genomic analysis in personalized medicine. Because tumor spheroids incorporate many features of solid tumors and reflect resistance to drugs and radiation, as in human cancers, they are widely used in drug screening studies. Testing patient-derived 3D cancer spheroids with some anticancer drugs based on information from molecular profiling can reveal the sensitivity of tumor cells to drugs and provide the right compounds to be effective against resistant cells. Given that many patients do not respond to standard treatments, patient-specific treatments will be more effective, less toxic. They will affect survival better compared to the standard approach used for all patients.

Keywords: Cancer, precision medicine, 3D culture, spheroid, drug screening, chemotherapy.

Graphical Abstract

[1]
Dan, N.; Setua, S.; Kashyap, V.; Khan, S.; Jaggi, M.; Yallapu, M.; Chauhan, S. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications. Pharmaceuticals, 2018, 11(2), 32.
[http://dx.doi.org/10.3390/ph11020032] [PMID: 29642542]
[2]
Huang, Y.; Huang, Z.; Tang, Z.; Chen, Y.; Huang, M.; Liu, H.; Huang, W.; Ye, Q.; Jia, B. Research progress, challenges, and breakthroughs of organoids as disease models. Front. Cell Dev. Biol., 2021, 9, 740574.
[http://dx.doi.org/10.3389/fcell.2021.740574] [PMID: 34869324]
[3]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[4]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[5]
Şekeroğlu, Z.A.; Şekeroğlu, V.; Küçük, N. Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells. Int. J. Toxicol., 2021, 40(1), 52-61.
[http://dx.doi.org/10.1177/1091581820961498] [PMID: 32975457]
[6]
Popova, A.A.; Levkin, P.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy. Adv. Ther., 2020, 3(2), 1900100.
[http://dx.doi.org/10.1002/adtp.201900100]
[7]
Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747.
[http://dx.doi.org/10.3390/genes11070747] [PMID: 32640513]
[8]
Vasmatzis, G.; Liu, M.C.; Reganti, S.; Feathers, R.W.; Smadbeck, J.; Johnson, S.H.; Schaefer Klein, J.L.; Harris, F.R.; Yang, L.; Kosari, F.; Murphy, S.J.; Borad, M.J.; Thompson, E.A.; Cheville, J.C.; Anastasiadis, P.Z. Integration of comprehensive genomic analysis and functional screening of affected molecular pathways to inform cancer therapy. Mayo Clin. Proc., 2020, 95(2), 306-318.
[http://dx.doi.org/10.1016/j.mayocp.2019.07.019] [PMID: 31685261]
[9]
Fong, E.L.S.; Toh, T.B.; Yu, H.; Chow, E.K.H., III Culture as a clinically relevant model for personalized medicine. SLAS Technol., 2017, 22(3), 245-253.
[http://dx.doi.org/10.1177/2472630317697251] [PMID: 28277923]
[10]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and personalized medicine for cancer treatment. Technology, 2018, 6(03n04), 79-100.
[http://dx.doi.org/10.1142/S2339547818300020] [PMID: 30713991]
[11]
Colella, G.; Fazioli, F.; Gallo, M.; De Chiara, A.; Apice, G.; Ruosi, C.; Cimmino, A.; de Nigris, F. Sarcoma spheroids and organoids-promising tools in the era of personalized medicine. Int. J. Mol. Sci., 2018, 19(2), 615.
[http://dx.doi.org/10.3390/ijms19020615] [PMID: 29466296]
[12]
Abugomaa, A.; Elbadawy, M. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? Expert Rev. Precis. Med. Drug Dev., 2020, 5(1), 1-5.
[http://dx.doi.org/10.1080/23808993.2020.1715794]
[13]
Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D cell cultures - A comparison of different types of cancer cell cultures. Arch. Med. Sci., 2018, 14(4), 910-919.
[PMID: 30002710]
[14]
Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer, 2018, 18(7), 407-418.
[http://dx.doi.org/10.1038/s41568-018-0007-6] [PMID: 29692415]
[15]
Jensen, C.; Teng, Y. Is it time to start transitioning from 2D to 3D cell culture. Front. Mol. Biosci., 2020, 7, 33.
[http://dx.doi.org/10.3389/fmolb.2020.00033] [PMID: 32211418]
[16]
Liu, K.; Newbury, P.A.; Glicksberg, B.S.; Zeng, W.Z.D.; Paithankar, S.; Andrechek, E.R.; Chen, B. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat. Commun., 2019, 10(1), 2138.
[http://dx.doi.org/10.1038/s41467-019-10148-6] [PMID: 31092827]
[17]
Katsuta, E.; Rashid, O.M.; Takabe, K. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum. Cell, 2020, 33(4), 930-937.
[http://dx.doi.org/10.1007/s13577-020-00380-4] [PMID: 32507979]
[18]
Kim, J.; Koo, B.K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol., 2020, 21(10), 571-584.
[http://dx.doi.org/10.1038/s41580-020-0259-3] [PMID: 32636524]
[19]
Costa, E.C.; Moreira, A.F.; de Melo-Diogo, D.; Gaspar, V.M.; Carvalho, M.P.; Correia, I.J. 3D tumor spheroids: An overview on the tools and techniques used for their analysis. Biotechnol. Adv., 2016, 34(8), 1427-1441.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.002] [PMID: 27845258]
[20]
Magré, L.; Verstegen, M.M.A.; Buschow, S.; van der Laan, L.J.W.; Peppelenbosch, M.; Desai, J. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J. Immunother. Cancer, 2023, 11(5), e006290.
[http://dx.doi.org/10.1136/jitc-2022-006290] [PMID: 37220953]
[21]
Bregenzer, M.E.; Horst, E.N.; Mehta, P.; Novak, C.M.; Raghavan, S.; Snyder, C.S.; Mehta, G. Integrated cancer tissue engineering models for precision medicine. PLoS One, 2019, 14(5), e0216564.
[http://dx.doi.org/10.1371/journal.pone.0216564] [PMID: 31075118]
[22]
Kondo, J.; Inoue, M. Application of cancer organoid model for drug screening and personalized therapy. Cells, 2019, 8(5), 470.
[http://dx.doi.org/10.3390/cells8050470] [PMID: 31108870]
[23]
Stock, K.; Estrada, M.F.; Vidic, S.; Gjerde, K.; Rudisch, A.; Santo, V.E.; Barbier, M.; Blom, S.; Arundkar, S.C.; Selvam, I.; Osswald, A.; Stein, Y.; Gruenewald, S.; Brito, C.; van Weerden, W.; Rotter, V.; Boghaert, E.; Oren, M.; Sommergruber, W.; Chong, Y.; de Hoogt, R.; Graeser, R. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci. Rep., 2016, 6(1), 28951.
[http://dx.doi.org/10.1038/srep28951]
[24]
Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol., 2018, 9, 6.
[http://dx.doi.org/10.3389/fphar.2018.00006] [PMID: 29410625]
[25]
Yakavets, I.; Francois, A.; Benoit, A.; Merlin, J.L.; Bezdetnaya, L.; Vogin, G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: Optimization study. Sci. Rep., 2020, 10(1), 21273.
[http://dx.doi.org/10.1038/s41598-020-78087-7] [PMID: 33277538]
[26]
Brüningk, S.C.; Rivens, I.; Box, C.; Oelfke, U.; ter Haar, G. 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments. Sci. Rep., 2020, 10(1), 1653.
[http://dx.doi.org/10.1038/s41598-020-58569-4] [PMID: 32015396]
[27]
Gunti, S.; Hoke, A.T.K.; Vu, K.P.; London, N.R. Organoid and Spheroid tumor models: Techniques and applications. Cancers, 2021, 13(4), 874.
[http://dx.doi.org/10.3390/cancers13040874] [PMID: 33669619]
[28]
Jang, Y.; Jung, H.; Ju, J.H. Chondrogenic differentiation induction of adipose-derived stem cells by centrifugal gravity. J. Vis. Exp., 2017, 120(120), 54934.
[PMID: 28287507]
[29]
Lee, N.H.; Bayaraa, O.; Zechu, Z.; Kim, H.S. Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep., 2021, 54(7), 356-367.
[http://dx.doi.org/10.5483/BMBRep.2021.54.7.059] [PMID: 34154700]
[30]
Quereda, V.; Hou, S.; Madoux, F.; Scampavia, L.; Spicer, T.P.; Duckett, D.A. Cytotoxic three-dimensional-spheroid, high-throughput assay using patient-derived glioma stem cells. SLAS Discov. Adv. Life Sci., 2018, 23, 842-849.
[31]
Halfter, K.; Hoffmann, O.; Ditsch, N.; Ahne, M.; Arnold, F.; Paepke, S.; Grab, D.; Bauerfeind, I.; Mayer, B. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids. J. Transl. Med., 2016, 14(1), 112.
[http://dx.doi.org/10.1186/s12967-016-0855-3] [PMID: 27142386]
[32]
Jeppesen, M.; Hagel, G.; Glenthoj, A.; Vainer, B.; Ibsen, P.; Harling, H.; Thastrup, O.; Jørgensen, L.N.; Thastrup, J. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS One, 2017, 12(9), e0183074.
[http://dx.doi.org/10.1371/journal.pone.0183074] [PMID: 28877221]
[33]
Della Corte, C.M.; Barra, G.; Ciaramella, V.; Di Liello, R.; Vicidomini, G.; Zappavigna, S.; Luce, A.; Abate, M.; Fiorelli, A.; Caraglia, M.; Santini, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Antitumor activity of dual blockade of PD-L1 and MEK in NSCLC patients derived three-dimensional spheroid cultures. J. Exp. Clin. Cancer Res., 2019, 38(1), 253.
[http://dx.doi.org/10.1186/s13046-019-1257-1] [PMID: 31196138]
[34]
Raghavan, S.; Mehta, P.; Ward, M.R.; Bregenzer, M.E.; Fleck, E.M.A.; Tan, L.; McLean, K.; Buckanovich, R.J.; Mehta, G. Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Clin. Cancer Res., 2017, 23(22), 6934-6945.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0133] [PMID: 28814433]
[35]
Tomás-Bort, E.; Kieler, M.; Sharma, S.; Candido, J.B.; Loessner, D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics, 2020, 10(11), 5074-5089.
[http://dx.doi.org/10.7150/thno.42441] [PMID: 32308769]
[36]
Linxweiler, J.; Hammer, M.; Muhs, S.; Kohn, M.; Pryalukhin, A.; Veith, C.; Bohle, R.M.; Stöckle, M.; Junker, K.; Saar, M. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J. Cancer Res. Clin. Oncol., 2019, 145(3), 551-559.
[http://dx.doi.org/10.1007/s00432-018-2803-5] [PMID: 30474758]
[37]
Lo, Y.H.; Karlsson, K.; Kuo, C.J. Applications of organoids for cancer biology and precision medicine. Nat. Can., 2020, 1(8), 761-773.
[http://dx.doi.org/10.1038/s43018-020-0102-y] [PMID: 34142093]
[38]
Driehuis, E.; Kretzschmar, K.; Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 2020, 15(10), 3380-3409.
[http://dx.doi.org/10.1038/s41596-020-0379-4] [PMID: 32929210]
[39]
Liu, C.; Qin, T.; Huang, Y.; Li, Y.; Chen, G.; Sun, C. Drug screening model meets cancer organoid technology. Transl. Oncol., 2020, 13(11), 100840.
[http://dx.doi.org/10.1016/j.tranon.2020.100840] [PMID: 32822897]
[40]
Patel, N.R.; Aryasomayajula, B.; Abouzeid, A.H.; Torchilin, V.P. Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems. Ther. Deliv., 2015, 6(4), 509-520.
[http://dx.doi.org/10.4155/tde.15.1] [PMID: 25996047]
[41]
Tung, Y.C.; Hsiao, A.Y.; Allen, S.G.; Torisawa, Y.; Ho, M.; Takayama, S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011, 136(3), 473-478.
[http://dx.doi.org/10.1039/C0AN00609B] [PMID: 20967331]
[42]
Hsiao, A.Y.; Tung, Y.C.; Kuo, C.H.; Mosadegh, B.; Bedenis, R.; Pienta, K.J.; Takayama, S. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed. Microdev., 2012, 14(2), 313-323.
[http://dx.doi.org/10.1007/s10544-011-9608-5] [PMID: 22057945]
[43]
Kelm, J.M.; Timmins, N.E.; Brown, C.J.; Fussenegger, M.; Nielsen, L.K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 2003, 83(2), 173-180.
[http://dx.doi.org/10.1002/bit.10655] [PMID: 12768623]
[44]
deRidder, L.; Cornelissen, M.; de Ridder, D. Autologous spheroid culture: A screening tool for human brain tumour invasion. Crit. Rev. Oncol. Hematol., 2000, 36(2-3), 107-122.
[http://dx.doi.org/10.1016/S1040-8428(00)00081-0] [PMID: 11033301]
[45]
Wartenberg, M.; Dönmez, F.; Ling, F.C.; Acker, H.; Hescheler, J.; Sauer, H. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J., 2001, 15(6), 995-1005.
[PMID: 11292660]
[46]
Glicklis, R.; Merchuk, J.C.; Cohen, S. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol. Bioeng., 2004, 86(6), 672-680.
[http://dx.doi.org/10.1002/bit.20086] [PMID: 15137079]
[47]
Nyberg, S.L.; Hardin, J.; Amiot, B.; Argikar, U.A.; Remmel, R.P.; Rinaldo, P. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transpl., 2005, 11(8), 901-910.
[http://dx.doi.org/10.1002/lt.20446] [PMID: 16035089]
[48]
Castañeda, F.; Kinne, R.K.H. Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids. J. Cancer Res. Clin. Oncol., 2000, 126(6), 305-310.
[http://dx.doi.org/10.1007/s004320050348] [PMID: 10870639]
[49]
Glicklis, R.; Shapiro, L.; Agbaria, R.; Merchuk, J.C.; Cohen, S. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol. Bioeng., 2000, 67(3), 344-353.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2] [PMID: 10620265]
[50]
Kh, L.; Maeda, S.; Saito, T. Long-term maintenance of liver-specific functions in three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge support. Biotechnol. Appl. Biochem., 1995, 21(1), 19-27.
[http://dx.doi.org/10.1111/j.1470-8744.1995.tb00325.x] [PMID: 7536008]
[51]
Perche, F.; Patel, N.R.; Torchilin, V.P. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG–PE micelles in ovarian cancer cell spheroid model. J. Control. Release, 2012, 164(1), 95-102.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.003] [PMID: 22974689]
[52]
Lin, R.Z.; Chou, L.F.; Chien, C.C.M.; Chang, H.Y. Dynamic analysis of hepatoma spheroid formation: Roles of E-cadherin and β1-integrin. Cell Tissue Res., 2006, 324(3), 411-422.
[http://dx.doi.org/10.1007/s00441-005-0148-2] [PMID: 16489443]
[53]
Kinch, M.S. An analysis of FDA-approved drugs for oncology. Drug Discov. Today, 2014, 19(12), 1831-1835.
[http://dx.doi.org/10.1016/j.drudis.2014.08.007] [PMID: 25172803]
[54]
MacConaill, L.E.; Garcia, E.; Shivdasani, P.; Ducar, M.; Adusumilli, R.; Breneiser, M.; Byrne, M.; Chung, L.; Conneely, J.; Crosby, L.; Garraway, L.A.; Gong, X.; Hahn, W.C.; Hatton, C.; Kantoff, P.W.; Kluk, M.; Kuo, F.; Jia, Y.; Joshi, R.; Longtine, J.; Manning, A.; Palescandolo, E.; Sharaf, N.; Sholl, L.; van Hummelen, P.; Wade, J.; Wollinson, B.M.; Zepf, D.; Rollins, B.J.; Lindeman, N.I. Prospective enterprise-level molecular genotyping of a cohort of cancer patients. J. Mol. Diagn., 2014, 16(6), 660-672.
[http://dx.doi.org/10.1016/j.jmoldx.2014.06.004] [PMID: 25157968]
[55]
Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.; Brannon, A.R.; O’Reilly, C.; Sadowska, J.; Casanova, J.; Yannes, A.; Hechtman, J.F.; Yao, J.; Song, W.; Ross, D.S.; Oultache, A.; Dogan, S.; Borsu, L.; Hameed, M.; Nafa, K.; Arcila, M.E.; Ladanyi, M.; Berger, M.F. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn., 2015, 17(3), 251-264.
[http://dx.doi.org/10.1016/j.jmoldx.2014.12.006] [PMID: 25801821]
[56]
Horvath, P.; Aulner, N.; Bickle, M.; Davies, A.M.; Nery, E.D.; Ebner, D.; Montoya, M.C.; Östling, P.; Pietiäinen, V.; Price, L.S.; Shorte, S.L.; Turcatti, G.; von Schantz, C.; Carragher, N.O. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov., 2016, 15(11), 751-769.
[http://dx.doi.org/10.1038/nrd.2016.175] [PMID: 27616293]
[57]
Mittler, F.; Obeïd, P.; Rulina, A.V.; Haguet, V.; Gidrol, X.; Balakirev, M.Y. High-content monitoring of drug effects in a 3D spheroid model. Front. Oncol., 2017, 7, 293.
[http://dx.doi.org/10.3389/fonc.2017.00293] [PMID: 29322028]
[58]
Hirschhaeuser, F.; Menne, H.; Dittfeld, C.; West, J.; Mueller-Klieser, W.; Kunz-Schughart, L.A. Multicellular tumor spheroids: An underestimated tool is catching up again. J. Biotechnol., 2010, 148(1), 3-15.
[http://dx.doi.org/10.1016/j.jbiotec.2010.01.012] [PMID: 20097238]
[59]
Weiswald, L.B.; Bellet, D.; Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia, 2015, 17(1), 1-15.
[http://dx.doi.org/10.1016/j.neo.2014.12.004] [PMID: 25622895]
[60]
Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194), 1247125.
[http://dx.doi.org/10.1126/science.1247125] [PMID: 25035496]
[61]
Bredenoord, A.L.; Clevers, H.; Knoblich, J.A. Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355(6322), eaaf9414.
[http://dx.doi.org/10.1126/science.aaf9414] [PMID: 28104841]
[62]
Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254.
[http://dx.doi.org/10.1038/ncb3312] [PMID: 26911908]
[63]
Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov., 2015, 14(4), 248-260.
[http://dx.doi.org/10.1038/nrd4539] [PMID: 25792263]
[64]
Skardal, A.; Shupe, T.; Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today, 2016, 21(9), 1399-1411.
[http://dx.doi.org/10.1016/j.drudis.2016.07.003] [PMID: 27422270]
[65]
Pati, F.; Gantelius, J.; Svahn, H.A. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed., 2016, 55(15), 4650-4665.
[http://dx.doi.org/10.1002/anie.201505062] [PMID: 26895542]
[66]
Nath, S.; Devi, G.R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther., 2016, 163, 94-108.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.013] [PMID: 27063403]
[67]
Jang, M.; Koh, I.; Lee, S.J.; Cheong, J.H.; Kim, P. Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci. Rep., 2017, 7(1), 41541.
[http://dx.doi.org/10.1038/srep41541] [PMID: 28128310]
[68]
Lee, K.H.; Kim, T.H. Recent advances in multicellular tumor spheroid generation for drug screening. Biosensors, 2021, 11(11), 445.
[http://dx.doi.org/10.3390/bios11110445] [PMID: 34821661]
[69]
Bosnakovski, D.; Mizuno, M.; Kim, G.; Ishiguro, T.; Okumura, M.; Iwanaga, T.; Kadosawa, T.; Fujinaga, T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp. Hematol., 2004, 32(5), 502-509.
[http://dx.doi.org/10.1016/j.exphem.2004.02.009] [PMID: 15145219]
[70]
Zhang, L.; Su, P.; Xu, C.; Yang, J.; Yu, W.; Huang, D. Chondrogenic differentiation of human mesenchymal stem cells: A comparison between micromass and pellet culture systems. Biotechnol. Lett., 2010, 32(9), 1339-1346.
[http://dx.doi.org/10.1007/s10529-010-0293-x] [PMID: 20464452]
[71]
Kaur, G.; Evans, D.M.; Teicher, B.A.; Coussens, N.P. Complex tumor spheroids, a tissue-mimicking tumor model, for drug discovery and precision medicine. SLAS Discov., 2021, 26(10), 1298-1314.
[http://dx.doi.org/10.1177/24725552211038362] [PMID: 34772287]
[72]
Ben-David, U.; Ha, G.; Tseng, Y.Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; Golub, T.R. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet., 2017, 49(11), 1567-1575.
[http://dx.doi.org/10.1038/ng.3967] [PMID: 28991255]
[73]
Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; Nag, A.; Kugener, G.; Cimini, B.; Tsvetkov, P.; Maruvka, Y.E.; O’Rourke, R.; Garrity, A.; Tubelli, A.A.; Bandopadhayay, P.; Tsherniak, A.; Vazquez, F.; Wong, B.; Birger, C.; Ghandi, M.; Thorner, A.R.; Bittker, J.A.; Meyerson, M.; Getz, G.; Beroukhim, R.; Golub, T.R. Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560(7718), 325-330.
[http://dx.doi.org/10.1038/s41586-018-0409-3] [PMID: 30089904]
[74]
Gilazieva, Z.; Ponomarev, A.; Rutland, C.; Rizvanov, A.; Solovyeva, V. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers, 2020, 12(10), 2727.
[http://dx.doi.org/10.3390/cancers12102727] [PMID: 32977530]
[75]
Vinci, M.; Gowan, S.; Boxall, F.; Patterson, L.; Zimmermann, M.; Court, W.; Lomas, C.; Mendiola, M.; Hardisson, D.; Eccles, S.A. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol., 2012, 10(1), 29.
[http://dx.doi.org/10.1186/1741-7007-10-29] [PMID: 22439642]
[76]
Baek, N.; Seo, O.W.; Kim, M.; Hulme, J.; An, S.S.A. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. OncoTargets Ther., 2016, 9, 7207-7218.
[http://dx.doi.org/10.2147/OTT.S112566] [PMID: 27920558]
[77]
Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep., 2016, 6(1), 19103.
[http://dx.doi.org/10.1038/srep19103] [PMID: 26752500]
[78]
Vinci, M.; Box, C.; Eccles, S.A. Three-dimensional (3D) tumor spheroid invasion assay. J. Vis. Exp., 2015, (99), e52686.
[PMID: 25993495]
[79]
Weiswald, L.B.; Guinebretière, J.M.; Richon, S.; Bellet, D.; Saubaméa, B.; Dangles-Marie, V. In situ protein expression in tumour spheres: Development of an immunostaining protocol for confocal microscopy. BMC Cancer, 2010, 10(1), 106.
[http://dx.doi.org/10.1186/1471-2407-10-106] [PMID: 20307308]
[80]
Dufau, I.; Frongia, C.; Sicard, F.; Dedieu, L.; Cordelier, P.; Ausseil, F.; Ducommun, B.; Valette, A. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: Application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer, 2012, 12(1), 15.
[http://dx.doi.org/10.1186/1471-2407-12-15] [PMID: 22244109]
[81]
Anastasov, N.; Höfig, I.; Radulović, V.; Ströbel, S.; Salomon, M.; Lichtenberg, J.; Rothenaigner, I.; Hadian, K.; Kelm, J.M.; Thirion, C.; Atkinson, M.J. A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer, 2015, 15(1), 466.
[http://dx.doi.org/10.1186/s12885-015-1481-9] [PMID: 26059545]
[82]
Martinez, N.J.; Titus, S.A.; Wagner, A.K.; Simeonov, A. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin. Drug Discov., 2015, 10(12), 1347-1361.
[http://dx.doi.org/10.1517/17460441.2015.1091814] [PMID: 26394277]
[83]
Smyrek, I.; Stelzer, E.H.K. Quantitative three-dimensional evaluation of immunofluorescence staining for large whole mount spheroids with light sheet microscopy. Biomed. Opt. Express, 2017, 8(2), 484-499.
[http://dx.doi.org/10.1364/BOE.8.000484] [PMID: 28270962]
[84]
Acker, H.; Carlsson, J.; Mueller-Klieser, W.; Sutherland, R.M. Comparative pO2 measurements in cell spheroids cultured with different techniques. Br. J. Cancer, 1987, 56(3), 325-327.
[http://dx.doi.org/10.1038/bjc.1987.197] [PMID: 3311111]
[85]
Alvarez-Pérez, J.; Ballesteros, P.; Cerdán, S. Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators. MAGMA, 2005, 18(6), 293-301.
[http://dx.doi.org/10.1007/s10334-005-0013-z] [PMID: 16328228]
[86]
Mellor, H.R.; Ferguson, D.J.P.; Callaghan, R. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. Br. J. Cancer, 2005, 93(3), 302-309.
[http://dx.doi.org/10.1038/sj.bjc.6602710] [PMID: 16052217]
[87]
Takagi, A.; Watanabe, M.; Ishii, Y.; Morita, J.; Hirokawa, Y.; Matsuzaki, T.; Shiraishi, T. Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features. Anticancer Res., 2007, 27(1A), 45-53.
[PMID: 17352215]
[88]
De Witt Hamer, P.C.; Van Tilborg, A A G.; Eijk, P.P.; Sminia, P.; Troost, D.; Van Noorden, C.J.F.; Ylstra, B.; Leenstra, S. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene, 2008, 27(14), 2091-2096.
[http://dx.doi.org/10.1038/sj.onc.1210850] [PMID: 17934519]
[89]
Kondo, J.; Endo, H.; Okuyama, H.; Ishikawa, O.; Iishi, H.; Tsujii, M.; Ohue, M.; Inoue, M. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc. Natl. Acad. Sci., 2011, 108(15), 6235-6240.
[http://dx.doi.org/10.1073/pnas.1015938108] [PMID: 21444794]
[90]
Saraiva, D.P.; Matias, A.T.; Braga, S.; Jacinto, A.; Cabral, M.G. Establishment of a 3D co-culture with MDA-MB-231 breast cancer cell line and patient-derived immune cells for application in the development of immunotherapies. Front. Oncol., 2020, 10, 1543.
[http://dx.doi.org/10.3389/fonc.2020.01543] [PMID: 32974189]
[91]
Wang, Z.; Tang, Y.; Tan, Y.; Wei, Q.; Yu, W. Cancer-associated fibroblasts in radiotherapy: Challenges and new opportunities. Cell Commun. Signal., 2019, 17(1), 47.
[http://dx.doi.org/10.1186/s12964-019-0362-2] [PMID: 31101063]
[92]
Jahanban-Esfahlan, R.; Seidi, K.; Banimohamad-Shotorbani, B.; Jahanban-Esfahlan, A.; Yousefi, B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J. Cell. Physiol., 2018, 233(4), 2982-2992.
[http://dx.doi.org/10.1002/jcp.26051] [PMID: 28608554]
[93]
Jahanban-Esfahlan, R.; Seidi, K.; Zarghami, N. Tumor vascular infarction: prospects and challenges. Int. J. Hematol., 2017, 105(3), 244-256.
[http://dx.doi.org/10.1007/s12185-016-2171-3] [PMID: 28044258]
[94]
Arneth, B. Tumor microenvironment. Medicina, 2019, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[95]
Bae, J.; Han, S.; Park, S. Recent advances in 3D bioprinted tumor microenvironment. Biochip J., 2020, 14(2), 137-147.
[http://dx.doi.org/10.1007/s13206-020-4201-8]
[96]
Millard, M.; Yakavets, I.; Zorin, V.; Kulmukhamedova, A.; Marchal, S.; Bezdetnaya, L. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int. J. Nanomedicine, 2017, 12, 7993-8007.
[http://dx.doi.org/10.2147/IJN.S146927] [PMID: 29184400]
[97]
Courau, T.; Bonnereau, J.; Chicoteau, J.; Bottois, H.; Remark, R.; Assante Miranda, L.; Toubert, A.; Blery, M.; Aparicio, T.; Allez, M.; Le Bourhis, L. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J. Immunother. Cancer, 2019, 7(1), 74.
[http://dx.doi.org/10.1186/s40425-019-0553-9] [PMID: 30871626]
[98]
Yuan, T.; Gao, D.; Li, S.; Jiang, Y. Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells. Chin. Chem. Lett., 2019, 30(2), 331-336.
[http://dx.doi.org/10.1016/j.cclet.2018.07.013]
[99]
Hirt, C.; Papadimitropoulos, A.; Mele, V.; Muraro, M.G.; Mengus, C.; Iezzi, G.; Terracciano, L.; Martin, I.; Spagnoli, G.C. “In vitro” 3D models of tumor-immune system interaction. Adv. Drug Deliv. Rev., 2014, 79-80, 145-154.
[http://dx.doi.org/10.1016/j.addr.2014.05.003] [PMID: 24819215]
[100]
Klöss, S.; Chambron, N.; Gardlowski, T.; Weil, S.; Koch, J.; Esser, R.; Pogge von Strandmann, E.; Morgan, M.A.; Arseniev, L.; Seitz, O.; Köhl, U. Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids. Front. Immunol., 2015, 6, 543.
[http://dx.doi.org/10.3389/fimmu.2015.00543] [PMID: 26579120]
[101]
Giannattasio, A.; Weil, S.; Kloess, S.; Ansari, N.; Stelzer, E.H.K.; Cerwenka, A.; Steinle, A.; Koehl, U.; Koch, J. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer, 2015, 15(1), 351.
[http://dx.doi.org/10.1186/s12885-015-1321-y] [PMID: 25933805]
[102]
Hoogstad-van Evert, J.S.; Cany, J.; van den Brand, D.; Oudenampsen, M.; Brock, R.; Torensma, R.; Bekkers, R.L.; Jansen, J.H.; Massuger, L.F.; Dolstra, H. Umbilical cord blood CD34 + progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg null mice. OncoImmunology, 2017, 6(8), e1320630.
[http://dx.doi.org/10.1080/2162402X.2017.1320630] [PMID: 28919991]
[103]
Lanuza, P.M.; Vigueras, A.; Olivan, S.; Prats, A.C.; Costas, S.; Llamazares, G.; Sanchez-Martinez, D.; Ayuso, J.M.; Fernandez, L.; Ochoa, I.; Pardo, J. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. OncoImmunology, 2018, 7(4), e1395123.
[http://dx.doi.org/10.1080/2162402X.2017.1395123] [PMID: 29632716]
[104]
Sherman, H.; Gitschier, H.J.; Rossi, A.E. A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. Front. Immunol., 2018, 9, 857.
[http://dx.doi.org/10.3389/fimmu.2018.00857] [PMID: 29740450]
[105]
Chang, C.H.; Wang, Y.; Li, R.; Rossi, D.L.; Liu, D.; Rossi, E.A.; Cardillo, T.M.; Goldenberg, D.M. Combination therapy with bispecific antibodies and PD-1 blockade enhances the antitumor potency of T cells. Cancer Res., 2017, 77(19), 5384-5394.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3431] [PMID: 28819027]
[106]
Koeck, S.; Kern, J.; Zwierzina, M.; Gamerith, G.; Lorenz, E.; Sopper, S.; Zwierzina, H.; Amann, A. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3 + CD8 + tumor infiltrating lymphocyte subpopulations. OncoImmunology, 2017, 6(6), e1323617.
[http://dx.doi.org/10.1080/2162402X.2017.1323617] [PMID: 28680763]
[107]
Zboralski, D.; Hoehlig, K.; Eulberg, D.; Frömming, A.; Vater, A. Increasing tumor infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res., 2017, 5(11), 950-956.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[108]
Deng, J.; Wang, E.S.; Jenkins, R.W.; Li, S.; Dries, R.; Yates, K.; Chhabra, S.; Huang, W.; Liu, H.; Aref, A.R.; Ivanova, E.; Paweletz, C.P.; Bowden, M.; Zhou, C.W.; Herter-Sprie, G.S.; Sorrentino, J.A.; Bisi, J.E.; Lizotte, P.H.; Merlino, A.A.; Quinn, M.M.; Bufe, L.E.; Yang, A.; Zhang, Y.; Zhang, H.; Gao, P.; Chen, T.; Cavanaugh, M.E.; Rode, A.J.; Haines, E.; Roberts, P.J.; Strum, J.C.; Richards, W.G.; Lorch, J.H.; Parangi, S.; Gunda, V.; Boland, G.M.; Bueno, R.; Palakurthi, S.; Freeman, G.J.; Ritz, J.; Haining, W.N.; Sharpless, N.E.; Arthanari, H.; Shapiro, G.I.; Barbie, D.A.; Gray, N.S.; Wong, K.K. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov., 2018, 8(2), 216-233.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0915] [PMID: 29101163]
[109]
Jenkins, R.W.; Aref, A.R.; Lizotte, P.H.; Ivanova, E.; Stinson, S.; Zhou, C.W.; Bowden, M.; Deng, J.; Liu, H.; Miao, D.; He, M.X.; Walker, W.; Zhang, G.; Tian, T.; Cheng, C.; Wei, Z.; Palakurthi, S.; Bittinger, M.; Vitzthum, H.; Kim, J.W.; Merlino, A.; Quinn, M.; Venkataramani, C.; Kaplan, J.A.; Portell, A.; Gokhale, P.C.; Phillips, B.; Smart, A.; Rotem, A.; Jones, R.E.; Keogh, L.; Anguiano, M.; Stapleton, L.; Jia, Z.; Barzily-Rokni, M.; Cañadas, I.; Thai, T.C.; Hammond, M.R.; Vlahos, R.; Wang, E.S.; Zhang, H.; Li, S.; Hanna, G.J.; Huang, W.; Hoang, M.P.; Piris, A.; Eliane, J.P.; Stemmer-Rachamimov, A.O.; Cameron, L.; Su, M.J.; Shah, P.; Izar, B.; Thakuria, M.; LeBoeuf, N.R.; Rabinowits, G.; Gunda, V.; Parangi, S.; Cleary, J.M.; Miller, B.C.; Kitajima, S.; Thummalapalli, R.; Miao, B.; Barbie, T.U.; Sivathanu, V.; Wong, J.; Richards, W.G.; Bueno, R.; Yoon, C.H.; Miret, J.; Herlyn, M.; Garraway, L.A.; Van Allen, E.M.; Freeman, G.J.; Kirschmeier, P.T.; Lorch, J.H.; Ott, P.A.; Hodi, F.S.; Flaherty, K.T.; Kamm, R.D.; Boland, G.M.; Wong, K.K.; Dornan, D.; Paweletz, C.P.; Barbie, D.A. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov., 2018, 8(2), 196-215.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0833] [PMID: 29101162]
[110]
Yuki, K.; Cheng, N.; Nakano, M.; Kuo, C.J. Organoid models of tumor immunology. Trends Immunol., 2020, 41(8), 652-664.
[http://dx.doi.org/10.1016/j.it.2020.06.010] [PMID: 32654925]
[111]
Lovitt, C.; Shelper, T.; Avery, V. Advanced cell culture techniques for cancer drug discovery. Biology, 2014, 3(2), 345-367.
[http://dx.doi.org/10.3390/biology3020345] [PMID: 24887773]