Combinatorial Chemistry & High Throughput Screening

Author(s): Vineeta Pandey* and Sonia Singh

DOI: 10.2174/0113862073300371240229100613

Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects

Page: [1701 - 1715] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.

Graphical Abstract

[1]
Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain., 2019, 2(2), 95-96.
[http://dx.doi.org/10.1007/s42398-019-00078-w]
[2]
Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Cur-rent status, challenges and future opportunities. Sci. Total Environ., 2020, 721, 137778.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137778] [PMID: 32179352]
[3]
Patakas, A. Abiotic stress-induced morphological and anatomical changes in plants. In: Abiotic stress responses in plants; Springer: New York, 2012; pp. 21-39.
[http://dx.doi.org/10.1007/978-1-4614-0634-1_2]
[4]
Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 2013, 4, 273.
[http://dx.doi.org/10.3389/fpls.2013.00273] [PMID: 23914193]
[5]
Kai, H.; Iba, K. Temperature stress in plants. In: Temperature Stress in Plants; 1st ed John Wiley & Sons, Ltd, 2014.
[http://dx.doi.org/10.1002/9780470015902.a0001320.pub2]
[6]
Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjärvi, J.; Mittler, R. Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. Trends Plant Sci., 2019, 24(1), 25-37.
[http://dx.doi.org/10.1016/j.tplants.2018.10.003] [PMID: 30401516]
[7]
Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.; Noor, H.; Alam, S. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 2019, 8(11), 508.
[http://dx.doi.org/10.3390/plants8110508] [PMID: 31731732]
[8]
Suzuki, N. Temperature stress and responses in plants. Int. J. Mol. Sci., 2019, 20(8), 2001.
[http://dx.doi.org/10.3390/ijms20082001] [PMID: 31022827]
[9]
Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558.
[http://dx.doi.org/10.3390/molecules24142558] [PMID: 31337070]
[10]
Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol., 2021, 337, 57-70.
[http://dx.doi.org/10.1016/j.jbiotec.2021.06.022] [PMID: 34175328]
[11]
Sajid, M.; Rashid, B.; Ali, Q.; Husnain, T. Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol. Plant., 2018, 62(3), 409-420.
[http://dx.doi.org/10.1007/s10535-018-0795-2]
[12]
Srivastava, S.; Pathak, A.D.; Gupta, P.S.; Shrivastava, A.K.; Srivastava, A.K. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J. Environ. Biol., 2012, 33(3), 657-661.
[PMID: 23029918]
[13]
Adams, S.; Cockshull, K.E.; Cave, C.R. Effect of temperature on the growth and development of tomato fruits. Ann. Bot., 2001, 88(5), 869-877.
[http://dx.doi.org/10.1006/anbo.2001.1524]
[14]
Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature, 2017, 4(4), 371-405.
[http://dx.doi.org/10.1080/23328940.2017.1377812] [PMID: 29435478]
[15]
Biamonti, G.; Caceres, J.F. Cellular stress and RNA splicing. Trends Biochem. Sci., 2009, 34(3), 146-153.
[http://dx.doi.org/10.1016/j.tibs.2008.11.004] [PMID: 19208481]
[16]
Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol., 2010, 2(12), a004390.
[http://dx.doi.org/10.1101/cshperspect.a004390] [PMID: 21123396]
[17]
Driedonks, N.; Xu, J.; Peters, J.L.; Park, S.; Rieu, I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci., 2015, 6, 999.
[http://dx.doi.org/10.3389/fpls.2015.00999] [PMID: 26635827]
[18]
Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: How close and how far? Life Sci., 2010, 86(11-12), 377-384.
[http://dx.doi.org/10.1016/j.lfs.2009.12.015] [PMID: 20060844]
[19]
Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress re-sponse. Trends Plant Sci., 2004, 9(5), 244-252.
[http://dx.doi.org/10.1016/j.tplants.2004.03.006] [PMID: 15130550]
[20]
Gao, J.; Zhang, W.; Dang, W.; Mou, Y.; Gao, Y.; Sun, B.J.; Du, W.G. Heat shock protein expression enhances heat tolerance of reptile embryos. Proc Biol Sci., 1791, 281(1791), 20141135.
[21]
Verghese, J.; Abrams, J.; Wang, Y.; Morano, K.A. Biology of the heat shock response and protein chaperones: Budding yeast (Saccharo-myces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev., 2012, 76(2), 115-158.
[http://dx.doi.org/10.1128/MMBR.05018-11] [PMID: 22688810]
[22]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[http://dx.doi.org/10.1007/s00018-004-4464-6] [PMID: 15770419]
[23]
Li, Z.G. Mechanisms of plant adaptation and tolerance to heat stress. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II; Springer: Singapore, 2020; pp. 39-59.
[http://dx.doi.org/10.1007/978-981-15-2172-0_3]
[24]
Wayne, N.; Mishra, P.; Bolon, D.N. Hsp90 and client protein maturation. In: Molecular Chaperones. Methods in Molecular Biology; Humana Press., 2011; 787, p. 33-44.
[http://dx.doi.org/10.1007/978-1-61779-295-3_3]
[25]
Liu, J.J.; Ekramoddoullah, A.K.M. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in re-sponse to biotic and abiotic stresses. Physiol. Mol. Plant Pathol., 2006, 68(1-3), 3-13.
[http://dx.doi.org/10.1016/j.pmpp.2006.06.004]
[26]
Webster, J.M.; Darling, A.L.; Uversky, V.N.; Blair, L.J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol., 2019, 10, 1047.
[http://dx.doi.org/10.3389/fphar.2019.01047] [PMID: 31619995]
[27]
Mishra, D.; Shekhar, S.; Singh, D.; Chakraborty, S.; Chakraborty, N. Heat shock proteins and abiotic stress tolerance in plants. In: Regulation of Heat Shock Protein Responses. Heat Shock Proteins; Springer: Cham, 2018; pp. 41-69.
[http://dx.doi.org/10.1007/978-3-319-74715-6_3]
[28]
Morimoto, R.I.; Santoro, M.G. Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat. Biotechnol., 1998, 16(9), 833-838.
[http://dx.doi.org/10.1038/nbt0998-833] [PMID: 9743115]
[29]
Larkindale, J.; Hall, J.D.; Knight, M.R.; Vierling, E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 2005, 138(2), 882-897.
[http://dx.doi.org/10.1104/pp.105.062257] [PMID: 15923322]
[30]
van Montfort, R.L.M.; Basha, E.; Friedrich, K.L.; Slingsby, C.; Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 2001, 8(12), 1025-1030.
[http://dx.doi.org/10.1038/nsb722] [PMID: 11702068]
[31]
Asthir, B. Protective mechanisms of heat tolerance in crop plants. J. Plant Interact., 2015, 10(1), 202-210.
[http://dx.doi.org/10.1080/17429145.2015.1067726]
[32]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[33]
Savicka, M.; Škute, N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seed-lings (Triticum aestivum L.). Ekologija (Liet. Moksl. Akad.), 2010, 56(1), 26-33.
[http://dx.doi.org/10.2478/v10055-010-0004-x]
[34]
Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 2020, 251(1), 3.
[http://dx.doi.org/10.1007/s00425-019-03293-1] [PMID: 31776765]
[35]
Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants, 2019, 8(4), 94.
[http://dx.doi.org/10.3390/antiox8040094] [PMID: 30965652]
[36]
Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2014, 2, 53.
[http://dx.doi.org/10.3389/fenvs.2014.00053]
[37]
Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot., 2018, 145, 104-120.
[http://dx.doi.org/10.1016/j.envexpbot.2017.11.004]
[38]
Figueroa-Soto, C.G.; Valenzuela-Soto, E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie, 2018, 147, 89-97.
[http://dx.doi.org/10.1016/j.biochi.2018.01.002] [PMID: 29366935]
[39]
Rasheed, R.; Wahid, A.; Farooq, M.; Hussain, I.; Basra, S.M.A. Role of proline and glycinebetaine pretreatments in improving heat toler-ance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul., 2011, 65(1), 35-45.
[http://dx.doi.org/10.1007/s10725-011-9572-3]
[40]
Allakhverdiev, S.I.; Los, D.A.; Mohanty, P.; Nishiyama, Y.; Murata, N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim. Biophys. Acta Bioenerg., 2007, 1767(12), 1363-1371.
[http://dx.doi.org/10.1016/j.bbabio.2007.10.005] [PMID: 17991419]
[41]
Rontein, D.; Basset, G.; Hanson, A.D. Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng., 2002, 4(1), 49-56.
[http://dx.doi.org/10.1006/mben.2001.0208] [PMID: 11800574]
[42]
Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51(1), 463-499.
[http://dx.doi.org/10.1146/annurev.arplant.51.1.463] [PMID: 15012199]
[43]
Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal., 2013, 19(9), 998-1011.
[http://dx.doi.org/10.1089/ars.2012.5074] [PMID: 23581681]
[44]
Foyer, C.H. Redox homeostasis: Opening up ascorbate transport. Nat. Plants, 2015, 1(1), 14012.
[http://dx.doi.org/10.1038/nplants.2014.12] [PMID: 27246058]
[45]
Munné-Bosch, S. Linking tocopherols with cellular signaling in plants. New Phytol., 2005, 166(2), 363-366.
[http://dx.doi.org/10.1111/j.1469-8137.2005.01411.x] [PMID: 15819901]
[46]
Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf., 2009, 8(4), 345-358.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00085.x]
[47]
Chen, Z.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol., 2022, 65, 102134.
[http://dx.doi.org/10.1016/j.pbi.2021.102134] [PMID: 34749068]
[48]
Larkindale, J.; Huang, B. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 2004, 161(4), 405-413.
[http://dx.doi.org/10.1078/0176-1617-01239] [PMID: 15128028]
[49]
Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, eth-ylene, and salicylic acid. Plant Physiol., 2002, 128(2), 682-695.
[http://dx.doi.org/10.1104/pp.010320] [PMID: 11842171]
[50]
Wang, J.; Huang, R. Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response. Front. Plant Sci., 2019, 10, 319.
[http://dx.doi.org/10.3389/fpls.2019.00319] [PMID: 30936887]
[51]
Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J., 2021, 105(2), 459-476.
[http://dx.doi.org/10.1111/tpj.15010] [PMID: 33015917]
[52]
Wang, X.; Zhuang, L.; Shi, Y.; Huang, B. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fes-cue and Arabidopsis. Int. J. Mol. Sci., 2017, 18(9), 1981.
[http://dx.doi.org/10.3390/ijms18091981] [PMID: 28914758]
[53]
Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, develop-ment, and stress responses. Plant Cell, 2020, 32(2), 295-318.
[http://dx.doi.org/10.1105/tpc.19.00335] [PMID: 31776234]
[54]
Kothari, A.; Lachowiec, J. Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int. J. Mol. Sci., 2021, 22(5), 2706.
[http://dx.doi.org/10.3390/ijms22052706] [PMID: 33800127]
[55]
Khalil, R.; Haroun, S.; Bassyoini, F.; Nagah, A.; Yusuf, M. Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant. J. Agric. Food Res., 2021, 5, 100182.
[http://dx.doi.org/10.1016/j.jafr.2021.100182]
[56]
Scott, I.M.; Clarke, S.M.; Wood, J.E.; Mur, L.A.J. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol., 2004, 135(2), 1040-1049.
[http://dx.doi.org/10.1104/pp.104.041293] [PMID: 15173571]
[57]
Clarke, S.M.; Mur, L.A.J.; Wood, J.E.; Scott, I.M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J., 2004, 38(3), 432-447.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02054.x] [PMID: 15086804]
[58]
Savada, R.P.; Ozga, J.A.; Jayasinghege, C.P.A.; Waduthanthri, K.D.; Reinecke, D.M. Heat stress differentially modifies ethylene biosynthe-sis and signaling in pea floral and fruit tissues. Plant Mol. Biol., 2017, 95(3), 313-331.
[http://dx.doi.org/10.1007/s11103-017-0653-1] [PMID: 28861701]
[59]
Jegadeesan, S.; Chaturvedi, P.; Ghatak, A.; Pressman, E.; Meir, S.; Faigenboim, A.; Rutley, N.; Beery, A.; Harel, A.; Weckwerth, W.; Firon, N. Proteomics of heat-stress and ethylene-mediated thermotolerance mechanisms in tomato pollen grains. Front. Plant Sci., 2018, 9, 1558.
[http://dx.doi.org/10.3389/fpls.2018.01558] [PMID: 30483278]
[60]
Wu, Y.S.; Yang, C.Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot. Stud., 2019, 60(1), 23.
[http://dx.doi.org/10.1186/s40529-019-0272-z] [PMID: 31549254]
[61]
Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J. Samaha, RR Creelman 8. Ara-bidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499), 2105-2110.
[62]
Kotak, S.; Vierling, E.; Bäumlein, H.; Koskull-Döring, P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 2007, 19(1), 182-195.
[http://dx.doi.org/10.1105/tpc.106.048165] [PMID: 17220197]
[63]
Heerklotz, D.; Döring, P.; Bonzelius, F.; Winkelhaus, S.; Nover, L. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol. Cell. Biol., 2001, 21(5), 1759-1768.
[http://dx.doi.org/10.1128/MCB.21.5.1759-1768.2001] [PMID: 11238913]
[64]
Nover, L. Bharti, K.; Döring, P.; Mishra, S.K.; Ganguli, A.; Scharf, K.D. &cestflwr; Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6(3), 177-189.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2] [PMID: 11599559]
[65]
Parankusam, S.; Adimulam, S.S.; Bhatnagar-Mathur, P.; Sharma, K.K. Nitric oxide (NO) in plant heat stress tolerance: Current knowledge and perspectives. Front. Plant Sci., 2017, 8, 1582.
[http://dx.doi.org/10.3389/fpls.2017.01582] [PMID: 28955368]
[66]
Liu, X.H.; Lyu, Y.S.; Yang, W.; Yang, Z.T.; Lu, S.J.; Liu, J.X. A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol. J., 2020, 18(5), 1317-1329.
[http://dx.doi.org/10.1111/pbi.13297] [PMID: 31733092]
[67]
Mishra, S.K.; Tripp, J.; Winkelhaus, S.; Tschiersch, B.; Theres, K.; Nover, L.; Scharf, K.D. In the complex family of heat stress transcrip-tion factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 2002, 16(12), 1555-1567.
[http://dx.doi.org/10.1101/gad.228802] [PMID: 12080093]
[68]
Yokotani, N.; Ichikawa, T.; Kondou, Y.; Matsui, M.; Hirochika, H.; Iwabuchi, M.; Oda, K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227(5), 957-967.
[http://dx.doi.org/10.1007/s00425-007-0670-4] [PMID: 18064488]
[69]
Sehgal, A.; Sita, K.; Nayyar, H. Heat stress in plants: Sensing and defense mechanisms. J. Plant Sci. Res., 2016, 32(2), 195.
[70]
Friant, S.; Meier, K.D.; Riezman, H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock pro-tein induction. EMBO J., 2003, 22(15), 3783-3791.
[http://dx.doi.org/10.1093/emboj/cdg375] [PMID: 12881413]
[71]
Ortiz, C.; Cardemil, L. Heat-shock responses in two leguminous plants: A comparative study. J. Exp. Bot., 2001, 52(361), 1711-1719.
[PMID: 11479337]
[72]
Liu, J.G.; Qin, Q.; Zhang, Z.; Peng, R.H.; Xiong, A.S.; Chen, J.M.; Yao, Q.H. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep., 2009, 42(1), 16-21.
[http://dx.doi.org/10.5483/BMBRep.2009.42.1.016] [PMID: 19192388]
[73]
Tang, Y.; Gao, C.C.; Gao, Y.; Yang, Y.; Shi, B.; Yu, J.L.; Lyu, C.; Sun, B.F.; Wang, H.L.; Xu, Y.; Yang, Y.G.; Chong, K. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell, 2020, 53(3), 272-286.e7.
[http://dx.doi.org/10.1016/j.devcel.2020.03.009] [PMID: 32275888]
[74]
Singh, A.; Mittal, D.; Lavania, D.; Agarwal, M.; Mishra, R.C.; Grover, A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones, 2012, 17(2), 243-254.
[http://dx.doi.org/10.1007/s12192-011-0303-5] [PMID: 22147560]
[75]
Li, H.W.; Zang, B.S.; Deng, X.W.; Wang, X.P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5), 1007-1018.
[http://dx.doi.org/10.1007/s00425-011-1458-0] [PMID: 21698458]
[76]
Alia, H.H.; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineer-ing of the synthesis of glycinebetaine. Plant J., 1998, 16(2), 155-161.
[http://dx.doi.org/10.1046/j.1365-313x.1998.00284.x] [PMID: 9839462]
[77]
Foresi, N.; Mayta, M.L.; Lodeyro, A.F.; Scuffi, D.; Correa-Aragunde, N.; García-Mata, C.; Casalongué, C.; Carrillo, N.; Lamattina, L. Ex-pression of the tetrahydrofolate‐dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J., 2015, 82(5), 806-821.
[http://dx.doi.org/10.1111/tpj.12852] [PMID: 25880454]
[78]
Feng, L.; Han, Y.; Liu, G.; An, B.; Yang, J.; Yang, G.; Li, Y.; Zhu, Y. Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct. Plant Biol., 2007, 34(9), 822-834.
[http://dx.doi.org/10.1071/FP07074] [PMID: 32689410]
[79]
Wei, H.; Liu, J.; Wang, Y.; Huang, N.; Zhang, X.; Wang, L.; Zhang, J.; Tu, J.; Zhong, X. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48°C high temperature at seedling stage. J. Hered., 2013, 104(2), 287-294.
[http://dx.doi.org/10.1093/jhered/ess103] [PMID: 23258571]
[80]
El-kereamy, A.; Bi, Y.M.; Ranathunge, K.; Beatty, P.H.; Good, A.G.; Rothstein, S.J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One, 2012, 7(12), e52030.
[http://dx.doi.org/10.1371/journal.pone.0052030] [PMID: 23251677]
[81]
Hossain, M.A.; Cho, J.I.; Han, M.; Ahn, C.H.; Jeon, J.S.; An, G.; Park, P.B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol., 2010, 167(17), 1512-1520.
[http://dx.doi.org/10.1016/j.jplph.2010.05.008] [PMID: 20576316]
[82]
Kan, Y.; Mu, X.R.; Zhang, H.; Gao, J.; Shan, J.X.; Ye, W.W.; Lin, H.X. TT2 controls rice thermotolerance through SCT1-dependent altera-tion of wax biosynthesis. Nat. Plants, 2021, 8(1), 53-67.
[http://dx.doi.org/10.1038/s41477-021-01039-0] [PMID: 34992240]
[83]
Zhang, H.; Zhou, J.F.; Kan, Y.; Shan, J.X.; Ye, W.W.; Dong, N.Q.; Guo, T.; Xiang, Y.H.; Yang, Y.B.; Li, Y.C.; Zhao, H.Y.; Yu, H.X.; Lu, Z.Q.; Guo, S.Q.; Lei, J.J.; Liao, B.; Mu, X.R.; Cao, Y.J.; Yu, J.J.; Lin, Y.; Lin, H.X. A genetic module at one locus in rice protects chloro-plasts to enhance thermotolerance. Science, 2022, 376(6599), 1293-1300.
[http://dx.doi.org/10.1126/science.abo5721] [PMID: 35709289]
[84]
Woldegiorgis, S.T.; Wu, T.; Gao, L.; Huang, Y.; Zheng, Y.; Qiu, F.; Xu, S.; Tao, H.; Harrison, A.; Liu, W.; He, H. Identification of heat-tolerant genes in non-reference sequences in rice by integrating pan-genome, transcriptomics, and QTLs. Genes (Basel), 2022, 13(8), 1353.
[http://dx.doi.org/10.3390/genes13081353] [PMID: 36011264]
[85]
Guo, W.; Zhang, J.; Zhang, N.; Xin, M.; Peng, H.; Hu, Z.; Ni, Z.; Du, J. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS One, 2015, 10(8), e0135667.
[http://dx.doi.org/10.1371/journal.pone.0135667] [PMID: 26305210]
[86]
Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci., 2020, 22(1), 117.
[http://dx.doi.org/10.3390/ijms22010117] [PMID: 33374376]
[87]
Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering cold stress tolerance in crop plants. Curr. Genomics, 2011, 12(1), 30-43.
[http://dx.doi.org/10.2174/138920211794520178] [PMID: 21886453]
[88]
Yashveer, S.; Redhu, N.; Singh, V.; Sangwan, S.; Laxman, H.; Tokas, J.; Malhotra, S.; Khurana, S.; Sindhu, A. Nanoparticles in agriculture: Characterization, uptake and role in mitigating heat stress. NRFHH, 2022, 2(2), 160-181.
[http://dx.doi.org/10.53365/nrfhh/144175]
[89]
Singh, S.; Singh, B.K.; Yadav, S.M.; Gupta, A.K. Applications of nanotechnology in agricultural and their role in disease management. Res. J. Nanosci. Nanotechnol., 2015, 5(1), 1-5.
[http://dx.doi.org/10.3923/rjnn.2015.1.5]
[90]
Rizwan, M.; Ali, S.; Adrees, M.; Ibrahim, M.; Tsang, D.C.W. Zia-ur-Rehman, M.; Zahir, Z.A.; Rinklebe, J.; Tack, F.M.G.; Ok, Y.S. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182, 90-105.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.013] [PMID: 28494365]
[91]
Abdoli, S.; Ghassemi-Golezani, K.; Alizadeh-Salteh, S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36939-36953.
[http://dx.doi.org/10.1007/s11356-020-09453-1] [PMID: 32577958]
[92]
Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Alina Marc, R. Nano-particles: The plant saviour under abiotic stresses. Nanomaterials, 2022, 12(21), 3915.
[http://dx.doi.org/10.3390/nano12213915] [PMID: 36364690]
[93]
Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem., 2010, 48(12), 999-1007.
[http://dx.doi.org/10.1016/j.plaphy.2010.09.009] [PMID: 20951054]
[94]
Haghighi, M.; Abolghasemi, R.; Teixeira da Silva, J.A. Low and high temperature stress affect the growth characteristics of tomato in hy-droponic culture with Se and nano-Se amendment. Sci. Hortic., 2014, 178, 231-240.
[http://dx.doi.org/10.1016/j.scienta.2014.09.006]
[95]
El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.S.M.; Fouda, S.E.E.; El-Tahan, A.M.; Hassan, M.A.A. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J. Biol. Sci., 2021, 28(8), 4461-4471.
[http://dx.doi.org/10.1016/j.sjbs.2021.04.043] [PMID: 34354431]
[96]
Kareem, H.A.; Saleem, M.F.; Saleem, S.; Rather, S.A.; Wani, S.H.; Siddiqui, M.H.; Alamri, S.; Kumar, R.; Gaikwad, N.B.; Guo, Z.; Niu, J.; Wang, Q. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front. Plant Sci., 2022, 13, 842349.
[http://dx.doi.org/10.3389/fpls.2022.842349] [PMID: 35251111]
[97]
Iqbal, M.; Raja, N.I.; Mashwani, Z.U.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A. Science, 2019, 43, 387-395.
[98]
Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018, 3(3), 2479-2491.
[http://dx.doi.org/10.1021/acsomega.7b01934]
[99]
Hassan, N.S.; Salah El Din, T.A.; Hendawey, M.H.; Borai, I.H.; Mahdi, A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr. Nanomater., 2018, 3(1), 32-43.
[http://dx.doi.org/10.2174/2405461503666180619160923]
[100]
Wu, J.; Wang, T. Synergistic effect of zinc oxide nanoparticles and heat stress on the alleviation of transcriptional gene silencing in Ara-bidopsis thaliana. Bull. Environ. Contam. Toxicol., 2020, 104(1), 49-56.
[http://dx.doi.org/10.1007/s00128-019-02749-0] [PMID: 31745599]
[101]
Younis, A.A.; Khattab, H.; Emam, M.M. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol. Plant., 2020, 64(1), 343-352.
[http://dx.doi.org/10.32615/bp.2020.030]
[102]
Yue, L.; Ma, C.; Zhan, X.; White, J.C.; Xing, B. Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ. Sci. Nano, 2017, 4(4), 843-855.
[http://dx.doi.org/10.1039/C6EN00487C]
[103]
Bhat, M.A.; Bhat, M.A.; Kumar, V.; Wani, I.A.; Bashir, H.; Shah, A.A.; Rahman, S.; Jan, A.T. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J. Biotechnol., 2020, 324, 34-60.
[http://dx.doi.org/10.1016/j.jbiotec.2020.09.013] [PMID: 32980369]
[104]
Demirer, G.S.; Zhang, H.; Matos, J.L.; Goh, N.S.; Cunningham, F.J.; Sung, Y.; Chang, R.; Aditham, A.J.; Chio, L.; Cho, M.J.; Staskawicz, B.; Landry, M.P. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol., 2019, 14(5), 456-464.
[http://dx.doi.org/10.1038/s41565-019-0382-5] [PMID: 30804481]
[105]
Ashraf, M. Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv., 2010, 28(1), 169-183.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.005] [PMID: 19914371]
[106]
Malik, M.K.; Slovin, J.P.; Hwang, C.H.; Zimmerman, J.L. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance ‡. Plant J., 1999, 20(1), 89-99.
[http://dx.doi.org/10.1046/j.1365-313X.1999.00581.x] [PMID: 10571868]
[107]
Murakami, T.; Matsuba, S.; Funatsuki, H.; Kawaguchi, K.; Saruyama, H.; Tanida, M.; Sato, Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 2004, 13(2), 165-175.
[http://dx.doi.org/10.1023/B:MOLB.0000018764.30795.c1]
[108]
Sanmiya, K.; Suzuki, K.; Egawa, Y.; Shono, M. Mitochondrial small heat‐shock protein enhances thermotolerance in tobacco plants. FEBS Lett., 2004, 557(1-3), 265-268.
[http://dx.doi.org/10.1016/S0014-5793(03)01494-7] [PMID: 14741379]
[109]
Queitsch, C.; Hong, S.W.; Vierling, E.; Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 2000, 12(4), 479-492.
[http://dx.doi.org/10.1105/tpc.12.4.479] [PMID: 10760238]
[110]
Wu, C. Heat shock transcription factors: Structure and regulation. Annu. Rev. Cell Dev. Biol., 1995, 11(1), 441-469.
[http://dx.doi.org/10.1146/annurev.cb.11.110195.002301] [PMID: 8689565]
[111]
Lee, J.H.; Hübel, A.; Schöffl, F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J., 1995, 8(4), 603-612.
[http://dx.doi.org/10.1046/j.1365-313X.1995.8040603.x] [PMID: 7496404]
[112]
Wan, X.L.; Yang, J.; Li, X.B.; Zhou, Q.; Guo, C.; Bao, M.Z.; Zhang, J.W. Over-expression of PmHSP17. 9 in transgenic Arabidopsis thali-ana confers thermotolerance. Plant Mol. Biol. Report., 2016, 34(5), 899-908.
[http://dx.doi.org/10.1007/s11105-016-0974-2]
[113]
Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of an Arabidop-sis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5), 1292-1309.
[http://dx.doi.org/10.1105/tpc.105.035881] [PMID: 16617101]
[114]
Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohor-mones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285.
[http://dx.doi.org/10.3390/biom9070285] [PMID: 31319576]
[115]
Papageorgiou, G.C.; Murata, N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth. Res., 1995, 44(3), 243-252.
[http://dx.doi.org/10.1007/BF00048597] [PMID: 24307094]
[116]
Yang, X.; Liang, Z.; Lu, C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 2005, 138(4), 2299-2309.
[http://dx.doi.org/10.1104/pp.105.063164] [PMID: 16024688]
[117]
Singh, A.; Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants, 2008, 14(1-2), 155-166.
[http://dx.doi.org/10.1007/s12298-008-0014-2] [PMID: 23572882]
[118]
Horváth, I.; Glatz, A.; Nakamoto, H.; Mishkind, M.L.; Munnik, T.; Saidi, Y.; Goloubinoff, P.; Harwood, J.L.; Vigh, L. Heat shock re-sponse in photosynthetic organisms: Membrane and lipid connections. Prog. Lipid Res., 2012, 51(3), 208-220.
[http://dx.doi.org/10.1016/j.plipres.2012.02.002] [PMID: 22484828]
[119]
Murakami, Y.; Tsuyama, M.; Kobayashi, Y.; Kodama, H.; Iba, K. Trienoic fatty acids and plant tolerance of high temperature. Science, 2000, 287(5452), 476-479.
[http://dx.doi.org/10.1126/science.287.5452.476] [PMID: 10642547]
[120]
Zhang, H.; Li, Y.; Zhu, J.K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants, 2018, 4(12), 989-996.
[http://dx.doi.org/10.1038/s41477-018-0309-4] [PMID: 30478360]
[121]
Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 2002, 53(372), 1331-1341.
[http://dx.doi.org/10.1093/jexbot/53.372.1331] [PMID: 11997379]
[122]
Shi, W.M.; Muramoto, Y.; Ueda, A.; Takabe, T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotol-erance by overexpressing in Arabidopsis thaliana. Gene, 2001, 273(1), 23-27.
[http://dx.doi.org/10.1016/S0378-1119(01)00566-2] [PMID: 11483357]
[123]
Chen, S.; Vaghchhipawala, Z.; Li, W.; Asard, H.; Dickman, M.B. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol., 2004, 135(3), 1630-1641.
[http://dx.doi.org/10.1104/pp.103.038091] [PMID: 15235116]
[124]
Tang, L.; Kwon, S.Y.; Kim, S.H.; Kim, J.S.; Choi, J.S.; Cho, K.Y.; Sung, C.K.; Kwak, S.S.; Lee, H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high tempera-ture. Plant Cell Rep., 2006, 25(12), 1380-1386.
[http://dx.doi.org/10.1007/s00299-006-0199-1] [PMID: 16841217]
[125]
Jha, U.C.; Nayyar, H.; Palakurthi, R.; Jha, R.; Valluri, V.; Bajaj, P.; Chitikineni, A.; Singh, N.P.; Varshney, R.K.; Thudi, M. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front. Plant Sci., 2021, 12, 655103.
[http://dx.doi.org/10.3389/fpls.2021.655103] [PMID: 34381469]
[126]
Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci., 2011, 30(6), 491-507.
[http://dx.doi.org/10.1080/07352689.2011.615687]
[127]
Yang, J.; Sears, R.G.; Gill, B.S.; Paulsen, G.M. Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica, 2002, 126(2), 185-193.
[http://dx.doi.org/10.1023/A:1016365728633]
[128]
Kumar, U.; Joshi, A.K.; Kumar, S.; Chand, R.; Röder, M.S. Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokin-iana in wheat (T. aestivum L.) lines ‘Ning 8201’ and ‘Chirya 3’. Mol. Breed., 2010, 26(3), 477-491.
[http://dx.doi.org/10.1007/s11032-009-9388-2]
[129]
Hao, L.; Qiao, X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ, 2018, 6, e5816.
[http://dx.doi.org/10.7717/peerj.5816] [PMID: 30356996]
[130]
Kumar, S.; Kumari, P.; Kumar, U.; Grover, M.; Singh, A.K.; Singh, R.; Sengar, R.S. Molecular approaches for designing heat tolerant wheat. J. Plant Biochem. Biotechnol., 2013, 22(4), 359-371.
[http://dx.doi.org/10.1007/s13562-013-0229-3]
[131]
Sadat, S.; Saeid, K.A.; Bihamta, M.R.; Torabi, S.; Salekdeh, S.G.; Ayeneh, G.A. Marker assisted selection for heat tolerance in bread wheat. World Appl. Sci. J., 2013, 21(8), 1181-1189.
[132]
Malzahn, A.; Lowder, L.; Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci., 2017, 7(1), 21.
[http://dx.doi.org/10.1186/s13578-017-0148-4] [PMID: 28451378]
[133]
Ricroch, A.; Clairand, P.; Harwood, W. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg. Top. Life Sci., 2017, 1(2), 169-182.
[http://dx.doi.org/10.1042/ETLS20170085] [PMID: 33525765]
[134]
Qiu, Z.; Kang, S.; He, L.; Zhao, J.; Zhang, S.; Hu, J.; Zeng, D.; Zhang, G.; Dong, G.; Gao, Z.; Ren, D.; Chen, G.; Guo, L.; Qian, Q.; Zhu, L. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci., 2018, 267, 168-179.
[http://dx.doi.org/10.1016/j.plantsci.2017.11.015] [PMID: 29362095]
[135]
Yu, W.; Wang, L.; Zhao, R.; Sheng, J.; Zhang, S.; Li, R.; Shen, L. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol., 2019, 19(1), 354.
[http://dx.doi.org/10.1186/s12870-019-1939-z] [PMID: 31412779]
[136]
Chaudhuri, A.; Halder, K.; Abdin, M.Z.; Majee, M.; Datta, A. Abiotic stress tolerance in plants: Brassinosteroids navigate competently. Int. J. Mol. Sci., 2022, 23(23), 14577.
[http://dx.doi.org/10.3390/ijms232314577] [PMID: 36498906]
[137]
Yin, Y.; Qin, K.; Song, X.; Zhang, Q.; Zhou, Y.; Xia, X.; Yu, J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol., 2018, 59(11), 2239-2254.
[http://dx.doi.org/10.1093/pcp/pcy146] [PMID: 30107607]
[138]
Casal, J.J.; Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol., 2019, 70(1), 321-346.
[http://dx.doi.org/10.1146/annurev-arplant-050718-095919] [PMID: 30786235]
[139]
Shinozaki, Y.; Ezura, K.; Hu, J.; Okabe, Y.; Bénard, C.; Prodhomme, D.; Gibon, Y.; Sun, T.; Ezura, H.; Ariizumi, T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci. Rep., 2018, 8(1), 12043.
[http://dx.doi.org/10.1038/s41598-018-30502-w] [PMID: 30104574]
[140]
Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops Food, 2015, 6(4), 183-205.
[http://dx.doi.org/10.1080/21645698.2015.1129937] [PMID: 26930114]