Transcription Factor MAZ Potentiates the Upregulated NEIL3-mediated Aerobic Glycolysis, Thereby Promoting Angiogenesis in Hepatocellular Carcinoma
  • * (Excluding Mailing and Handling)

Abstract

Background: Hepatocellular carcinoma (HCC) is characterized by high vascularity and notable abnormality of blood vessels, where angiogenesis is a key process in tumorigenesis and metastasis. The main functions of Nei Like DNA Glycosylase 3 (NEIL3) include DNA alcoholization repair, immune response regulation, nervous system development and function, and DNA damage signal transduction. However, the underlying mechanism of high expression NEIL3 in the development and progression of HCC and whether the absence or silencing of NEIL3 inhibits the development of cancer remain unclear. Therefore, a deeper understanding of the mechanisms by which increased NEIL3 expression promotes cancer development is needed.

Methods: Expression of NEIL3 and its upstream transcription factor MAZ in HCC tumor tissues was analyzed in bioinformatics efforts, while validation was done by qRT-PCR and western blot in HCC cell lines. The migration and tube formation capacity of HUVEC cells were analyzed by Transwell and tube formation assays. Glycolytic capacity was analyzed by extracellular acidification rate, glucose uptake, and lactate production levels. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter gene assays were utilized to investigate specific interactions between MAZ and NEIL3.

Results: NEIL3 and MAZ were substantially upregulated in HCC tissues and cells. NEIL3 was involved in modulating the glycolysis pathway, suppression of which reversed the stimulative impact of NEIL3 overexpression on migration and angiogenesis in HUVEC cells. MAZ bound to the promoter of NEIL3 to facilitate NEIL3 transcription. Silencing MAZ reduced NEIL3 expression and suppressed the glycolysis pathway, HUVEC cell migration, and angiogenesis.

Conclusion: MAZ potentiated the upregulated NEIL3-mediated glycolysis pathway and HCC angiogenesis. This study provided a rationale for the MAZ/NEIL3/glycolysis pathway as a possible option for anti-angiogenesis therapy in HCC.

[1]
O’Leary, C.; Mahler, M.; Soulen, M.C. Liver-directed therapy for hepatocellular carcinoma. Chin. Clin. Oncol., 2021, 10(1), 8.
[http://dx.doi.org/10.21037/cco-20-51] [PMID: 32527111]
[2]
Ganesan, P.; Kulik, L.M. Hepatocellular carcinoma. Clin. Liver Dis., 2023, 27(1), 85-102.
[http://dx.doi.org/10.1016/j.cld.2022.08.004] [PMID: 36400469]
[3]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[4]
Connell, L.C.; Harding, J.J.; Abou-Alfa, G.K. Advanced hepatocellular cancer: The current state of future research. Curr. Treat. Options Oncol., 2016, 17(8), 43.
[http://dx.doi.org/10.1007/s11864-016-0415-3] [PMID: 27344158]
[5]
Mohammad, N.S.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci., 2022, 38(1), 219-226.
[PMID: 35035429]
[6]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[7]
Zhu, A.X.; Duda, D.G.; Sahani, D.V.; Jain, R.K. HCC and angiogenesis: Possible targets and future directions. Nat. Rev. Clin. Oncol., 2011, 8(5), 292-301.
[http://dx.doi.org/10.1038/nrclinonc.2011.30] [PMID: 21386818]
[8]
Frenette, C.; Gish, R. Targeted systemic therapies for hepatocellular carcinoma: Clinical perspectives, challenges and implications. World J. Gastroenterol., 2012, 18(6), 498-506.
[http://dx.doi.org/10.3748/wjg.v18.i6.498] [PMID: 22363115]
[9]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[10]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[11]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[12]
Eelen, G.; Cruys, B.; Welti, J.; De Bock, K.; Carmeliet, P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol. Metab., 2013, 24(12), 589-596.
[http://dx.doi.org/10.1016/j.tem.2013.08.006] [PMID: 24075830]
[13]
Wang, X.; Abraham, S.; McKenzie, J.A.G.; Jeffs, N.; Swire, M.; Tripathi, V.B.; Luhmann, U.F.O.; Lange, C.A.K.; Zhai, Z.; Arthur, H.M.; Bainbridge, J.W.B.; Moss, S.E.; Greenwood, J. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature, 2013, 499(7458), 306-311.
[http://dx.doi.org/10.1038/nature12345] [PMID: 23868260]
[14]
Muppala, S.; Xiao, R.; Krukovets, I.; Verbovetsky, D.; Yendamuri, R.; Habib, N.; Raman, P.; Plow, E.; Stenina-Adognravi, O. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene, 2017, 36(36), 5189-5198.
[http://dx.doi.org/10.1038/onc.2017.140] [PMID: 28481870]
[15]
Luo, Z.; Shang, X.; Zhang, H.; Wang, G.; Massey, P.A.; Barton, S.R.; Kevil, C.G.; Dong, Y. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am. J. Pathol., 2019, 189(8), 1495-1500.
[http://dx.doi.org/10.1016/j.ajpath.2019.05.005] [PMID: 31345466]
[16]
Ramasamy, S.K.; Kusumbe, A.P.; Wang, L.; Adams, R.H. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507(7492), 376-380.
[http://dx.doi.org/10.1038/nature13146] [PMID: 24647000]
[17]
Jiang, L.; Yin, M.; Wei, X.; Liu, J.; Wang, X.; Niu, C.; Kang, X.; Xu, J.; Zhou, Z.; Sun, S.; Wang, X.; Zheng, X.; Duan, S.; Yao, K.; Qian, R.; Sun, N.; Chen, A.; Wang, R.; Zhang, J.; Chen, S.; Meng, D. Bach1 represses Wnt/β-Catenin signaling and angiogenesis. Circ. Res., 2015, 117(4), 364-375.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306829] [PMID: 26123998]
[18]
Shen, J.; Sun, Y.; Liu, X.; Zhu, Y.; Bao, B.; Gao, T.; Chai, Y.; Xu, J.; Zheng, X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res. Ther., 2021, 12(1), 415.
[http://dx.doi.org/10.1186/s13287-021-02487-3] [PMID: 34294121]
[19]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[20]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF Machinery: In Vitro and Ex Vivo Insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[21]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[22]
Lin, Z.; Zhang, Q.; Luo, W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur. J. Pharmacol., 2016, 793, 76-81.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.039] [PMID: 27840192]
[23]
Iwamoto, H.; Abe, M.; Yang, Y.; Cui, D.; Seki, T.; Nakamura, M.; Hosaka, K.; Lim, S.; Wu, J.; He, X.; Sun, X.; Lu, Y.; Zhou, Q.; Shi, W.; Torimura, T.; Nie, G.; Li, Q.; Cao, Y. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab., 2018, 28(1), 104-117.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.05.005] [PMID: 29861385]
[24]
Jiménez-Valerio, G.; Casanovas, O. Angiogenesis and metabolism: Entwined for therapy resistance. Trends Cancer, 2017, 3(1), 10-18.
[http://dx.doi.org/10.1016/j.trecan.2016.11.007] [PMID: 28718423]
[25]
Zhang, Y.; Yang, J.M. Altered energy metabolism in cancer. Cancer Biol. Ther., 2013, 14(2), 81-89.
[http://dx.doi.org/10.4161/cbt.22958] [PMID: 23192270]
[26]
Ganapathy-Kanniappan, S.; Geschwind, J.F.H. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol. Cancer, 2013, 12(1), 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[27]
Paul, S.; Ghosh, S.; Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol., 2022, 86(Pt 3), 1216-1230.
[http://dx.doi.org/10.1016/j.semcancer.2022.09.007] [PMID: 36330953]
[28]
Wu, W.; Wang, X.; Liao, L.; Chen, J.; Wang, Y.; Yao, M.; Zhu, L.; Li, J.; Wang, X.; Chen, A.F.; Zhang, G.; Zhang, Z.; Bai, Y. The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis., 2023, 14(3), 183.
[http://dx.doi.org/10.1038/s41419-023-05701-7] [PMID: 36878949]
[29]
Deng, F.; Zhou, R.; Lin, C.; Yang, S.; Wang, H.; Li, W.; Zheng, K.; Lin, W.; Li, X.; Yao, X.; Pan, M.; Zhao, L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics, 2019, 9(4), 1001-1014.
[http://dx.doi.org/10.7150/thno.30056] [PMID: 30867812]
[30]
Végran, F.; Boidot, R.; Michiels, C.; Sonveaux, P.; Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res., 2011, 71(7), 2550-2560.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2828] [PMID: 21300765]
[31]
Sonveaux, P.; Copetti, T.; De Saedeleer, C.J.; Végran, F.; Verrax, J.; Kennedy, K.M.; Moon, E.J.; Dhup, S.; Danhier, P.; Frérart, F.; Gallez, B.; Ribeiro, A.; Michiels, C.; Dewhirst, M.W.; Feron, O. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One, 2012, 7(3), e33418.
[http://dx.doi.org/10.1371/journal.pone.0033418] [PMID: 22428047]
[32]
Schoors, S.; De Bock, K.; Cantelmo, A.R.; Georgiadou, M.; Ghesquière, B.; Cauwenberghs, S.; Kuchnio, A.; Wong, B.W.; Quaegebeur, A.; Goveia, J.; Bifari, F.; Wang, X.; Blanco, R.; Tembuyser, B.; Cornelissen, I.; Bouché, A.; Vinckier, S.; Diaz-Moralli, S.; Gerhardt, H.; Telang, S.; Cascante, M.; Chesney, J.; Dewerchin, M.; Carmeliet, P. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab., 2014, 19(1), 37-48.
[http://dx.doi.org/10.1016/j.cmet.2013.11.008] [PMID: 24332967]
[33]
Singh, S.; Pandey, S.; Chawla, A.S.; Bhatt, A.N.; Roy, B.G.; Saluja, D.; Dwarakanath, B.S. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur. J. Cancer, 2019, 123, 11-24.
[http://dx.doi.org/10.1016/j.ejca.2019.09.005] [PMID: 31670076]
[34]
Hu, B.; Qu, C.; Qi, W.J.; Liu, C.H.; Xiu, D.R. Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma. Front. Genet., 2022, 13, 955673.
[http://dx.doi.org/10.3389/fgene.2022.955673] [PMID: 36267406]
[35]
Morland, I.; Rolseth, V.; Luna, L.; Rognes, T.; Bjørås, M.; Seeberg, E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res., 2002, 30(22), 4926-4936.
[http://dx.doi.org/10.1093/nar/gkf618] [PMID: 12433996]
[36]
Matta, J.; Morales, L.; Dutil, J.; Bayona, M.; Alvarez, C.; Suarez, E. Differential expression of DNA repair genes in Hispanic women with breast cancer. Mol. Cancer Biol., 2013, 1(1), 54.
[PMID: 25309843]
[37]
Nwani, N.; Condello, S.; Wang, Y.; Swetzig, W.; Barber, E.; Hurley, T.; Matei, D. A novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer. Cancers, 2019, 11(4), 502.
[http://dx.doi.org/10.3390/cancers11040502] [PMID: 30965686]
[38]
Barry, K.H.; Koutros, S.; Berndt, S.I.; Andreotti, G.; Hoppin, J.A.; Sandler, D.P.; Burdette, L.A.; Yeager, M.; Freeman, L.E.B.; Lubin, J.H.; Ma, X.; Zheng, T.; Alavanja, M.C.R. Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ. Health Perspect., 2011, 119(12), 1726-1732.
[http://dx.doi.org/10.1289/ehp.1103454] [PMID: 21810555]
[39]
Zhao, Z.; Gad, H.; Benitez-Buelga, C.; Sanjiv, K.; Xiangwei, H.; Kang, H.; Feng, M.; Zhao, Z.; Berglund, U.W.; Xia, Q.; Helleday, T. NEIL3 prevents senescence in hepatocellular carcinoma by repairing oxidative lesions at telomeres during mitosis. Cancer Res., 2021, 81(15), 4079-4093.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1028] [PMID: 34045188]
[40]
Wang, W.; Yin, Q.; Guo, S.; Wang, J. NEIL3 contributes toward the carcinogenesis of liver cancer and regulates PI3K/Akt/mTOR signaling. Exp. Ther. Med., 2021, 22(4), 1053.
[http://dx.doi.org/10.3892/etm.2021.10487] [PMID: 34434267]
[41]
Fleming, A.M.; Zhou, J.; Wallace, S.S.; Burrows, C.J. A Role for the Fifth G-Track in G-Quadruplex forming oncogene promoter sequences during oxidative stress: Do these “spare tires” have an evolved function? ACS Cent. Sci., 2015, 1(5), 226-233.
[http://dx.doi.org/10.1021/acscentsci.5b00202] [PMID: 26405692]
[42]
He, Q.; Yang, J.; Jin, Y. Immune infiltration and clinical significance analyses of the coagulation-related genes in hepatocellular carcinoma. Brief. Bioinform., 2022, 23(4), bbac291.
[http://dx.doi.org/10.1093/bib/bbac291] [PMID: 35849048]
[43]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR : A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[44]
Zhang, Q.; Liu, W.; Zhang, H.M.; Xie, G.Y.; Miao, Y.R.; Xia, M.; Guo, A.Y. hTFtarget: A comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics, 2020, 18(2), 120-128.
[http://dx.doi.org/10.1016/j.gpb.2019.09.006] [PMID: 32858223]
[45]
Zhao, X.; Jiang, P.; Deng, X.; Li, Z.; Tian, F.; Guo, F.; Li, X.; Wang, S. Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am. J. Cancer Res., 2016, 6(10), 2289-2298.
[PMID: 27822418]
[46]
Pulkkinen, H.H.; Kiema, M.; Lappalainen, J.P.; Toropainen, A.; Beter, M.; Tirronen, A.; Holappa, L.; Niskanen, H.; Kaikkonen, M.U.; Ylä-Herttuala, S.; Laakkonen, J.P. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis, 2021, 24(1), 129-144.
[http://dx.doi.org/10.1007/s10456-020-09748-4] [PMID: 33021694]
[47]
Lai, H.H.; Hung, L.Y.; Yen, C.J.; Hung, H.C.; Chen, R.Y.; Ku, Y.C.; Lo, H.T.; Tsai, H.W.; Lee, Y.P.; Yang, T.H.; Chen, Y.Y.; Huang, Y.S.; Huang, W. NEIL3 promotes hepatoma epithelial–mesenchymal transition by activating the BRAF / MEK / ERK / TWIST signaling pathway. J. Pathol., 2022, 258(4), 339-352.
[http://dx.doi.org/10.1002/path.6001] [PMID: 36181299]
[48]
Veeturi, S.S.; Rajabzadeh-Oghaz, H.; Pintér, N.K.; Waqas, M.; Hasan, D.M.; Snyder, K.V.; Siddiqui, A.H.; Tutino, V.M. Aneurysm risk metrics and hemodynamics are associated with greater vessel wall enhancement in intracranial aneurysms. R. Soc. Open Sci., 2021, 8(11), 211119.
[http://dx.doi.org/10.1098/rsos.211119] [PMID: 34804573]
[49]
Ren, R.; Guo, J.; Shi, J.; Tian, Y.; Li, M.; Kang, H. PKM2 regulates angiogenesis of VR-EPCs through modulating glycolysis, mitochondrial fission, and fusion. J. Cell. Physiol., 2020, 235(9), 6204-6217.
[http://dx.doi.org/10.1002/jcp.29549] [PMID: 32017072]
[50]
Hamza, A.A.; Heeba, G.H.; Hassanin, S.O.; Elwy, H.M.; Bekhit, A.A.; Amin, A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed. Pharmacother., 2023, 165, 115148.
[http://dx.doi.org/10.1016/j.biopha.2023.115148] [PMID: 37450997]
[51]
Abdu, S.; Juaid, N.; Amin, A.; Moulay, M.; Miled, N. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In Vivo & In Vitro Insights; Antioxidants: Basel, 2022, p. 11.
[52]
Awad, B.; Hamza, A.A.; Al-Maktoum, A.; Al-Salam, S.; Amin, A. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma. Cancers (Basel), 2023, 15(16), 4063.
[http://dx.doi.org/10.3390/cancers15164063] [PMID: 37627094]
[53]
Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics. Antioxidants, 2022, 11(6), 1125.
[http://dx.doi.org/10.3390/antiox11061125] [PMID: 35740022]
[54]
Shen, P.; Yang, T.; Chen, Q.; Yuan, H.; Wu, P.; Cai, B.; Meng, L.; Huang, X.; Liu, J.; Zhang, Y.; Hu, W.; Miao, Y.; Lu, Z.; Jiang, K. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol. Cancer, 2021, 20(1), 51.
[http://dx.doi.org/10.1186/s12943-021-01333-7] [PMID: 33750389]
[55]
Wang, T.; Zhu, X.; Wang, K.; Li, J.; Hu, X.; Lin, P.; Zhang, J. Transcriptional factor MAZ promotes cisplatin-induced DNA damage repair in lung adenocarcinoma by regulating NEIL3. Pulm. Pharmacol. Ther., 2023, 80, 102217.
[http://dx.doi.org/10.1016/j.pupt.2023.102217] [PMID: 37121465]
[56]
Pan, Z.; Zhao, R.; Li, B.; Qi, Y.; Qiu, W.; Guo, Q.; Zhang, S.; Zhao, S.; Xu, H.; Li, M.; Gao, Z.; Fan, Y.; Xu, J.; Wang, H.; Wang, S.; Qiu, J.; Wang, Q.; Guo, X.; Deng, L.; Zhang, P.; Xue, H.; Li, G. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol. Cancer, 2022, 21(1), 16.
[http://dx.doi.org/10.1186/s12943-021-01485-6] [PMID: 35031058]
[57]
Sun, X.; Liu, P. Prognostic biomarker NEIL3 and its association with immune infiltration in renal clear cell carcinoma. Front. Oncol., 2023, 13, 1073941.
[http://dx.doi.org/10.3389/fonc.2023.1073941] [PMID: 36816967]
[58]
Peng, L.; Liang, J.; Wang, Q.; Chen, G. A DNA damage repair gene signature associated with immunotherapy response and clinical prognosis in clear cell renal cell carcinoma. Front. Genet., 2022, 13, 798846.
[http://dx.doi.org/10.3389/fgene.2022.798846] [PMID: 35656315]
[59]
Wang, Q.; Li, Z.; Yang, J.; Peng, S.; Zhou, Q.; Yao, K.; Cai, W.; Xie, Z.; Qin, F.; Li, H.; Chen, X.; Li, K.; Huang, H. Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer. Cancer Biol. Med., 2022, 19(8), 1193-1210.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0550] [PMID: 34591415]
[60]
Huang, H.; Hua, Q. NEIL3 mediates lung cancer progression and modulates pi3k/akt/mtor signaling: A potential therapeutic target. Int. J. Genomics, 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/8348499] [PMID: 35535347]
[61]
Zhang, F.; Lu, J.; Yang, J.; Dai, Q.; Du, X.; Xu, Y.; Zhang, C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics, 2023, 75(1), 39-51.
[http://dx.doi.org/10.1007/s00251-022-01277-2] [PMID: 36114381]
[62]
Cantelmo, A.R.; Conradi, L.C.; Brajic, A.; Goveia, J.; Kalucka, J.; Pircher, A.; Chaturvedi, P.; Hol, J.; Thienpont, B.; Teuwen, L.A.; Schoors, S.; Boeckx, B.; Vriens, J.; Kuchnio, A.; Veys, K.; Cruys, B.; Finotto, L.; Treps, L.; Stav-Noraas, T.E.; Bifari, F.; Stapor, P.; Decimo, I.; Kampen, K.; De Bock, K.; Haraldsen, G.; Schoonjans, L.; Rabelink, T.; Eelen, G.; Ghesquière, B.; Rehman, J.; Lambrechts, D.; Malik, A.B.; Dewerchin, M.; Carmeliet, P. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell, 2016, 30(6), 968-985.
[http://dx.doi.org/10.1016/j.ccell.2016.10.006] [PMID: 27866851]
[63]
Matsumoto, K.; Noda, T.; Kobayashi, S.; Sakano, Y.; Yokota, Y.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Akita, H.; Gotoh, K.; Takeda, Y.; Tanemura, M.; Umeshita, K.; Doki, Y.; Eguchi, H. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma. Cancer Lett., 2021, 500, 29-40.
[http://dx.doi.org/10.1016/j.canlet.2020.12.011] [PMID: 33307155]
[64]
Othman, E.M.; Habib, H.A.; Zahran, M.E.; Amin, A.; Heeba, G.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 Pathways. Int. J. Mol. Sci., 2023, 24(16), 12651.
[http://dx.doi.org/10.3390/ijms241612651] [PMID: 37628836]
[65]
Bouabdallah, S.; Al-Maktoum, A.; Amin, A. Steroidal saponins: Naturally occurring compounds as inhibitors of the hallmarks of cancer. Cancers, 2023, 15(15), 3900.
[http://dx.doi.org/10.3390/cancers15153900] [PMID: 37568716]
[66]
Wu, C.X.; Zhao, W.P.; Kishi, H.; Dokan, J.; Jin, Z.X.; Wei, X.C.; Yokoyama, K.K.; Muraguchi, A. Activation of mouse RAG-2 promoter by Myc-associated zinc finger protein. Biochem. Biophys. Res. Commun., 2004, 317(4), 1096-1102.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.159] [PMID: 15094381]
[67]
Ray, A.; Dhar, S.; Ray, B.K. Control of VEGF expression in triple-negative breast carcinoma cells by suppression of SAF-1 transcription factor activity. Mol. Cancer Res., 2011, 9(8), 1030-1041.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0598] [PMID: 21665940]
[68]
Ray, A.; Ray, B.K. Induction of Ras by SAF -1/ MAZ through a feed-forward loop promotes angiogenesis in breast cancer. Cancer Med., 2015, 4(2), 224-234.
[http://dx.doi.org/10.1002/cam4.362] [PMID: 25449683]
[69]
Yao, Y.; Ma, J.; Xue, Y.; Wang, P.; Li, Z.; Li, Z.; Hu, Y.; Shang, X.; Liu, Y. MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol. Oncol., 2015, 9(3), 640-656.
[http://dx.doi.org/10.1016/j.molonc.2014.11.003] [PMID: 25487955]
[70]
Izzo, M.W.; Strachan, G.D.; Stubbs, M.C.; Hall, D.J. Transcriptional repression from the c-myc P2 promoter by the zinc finger protein ZF87/MAZ. J. Biol. Chem., 1999, 274(27), 19498-19506.
[http://dx.doi.org/10.1074/jbc.274.27.19498] [PMID: 10383467]
[71]
Su, J.M.; Lai, X.M.; Lan, K.H.; Li, C.P.; Chao, Y.; Yen, S.H.; Chang, F.Y.; Lee, S.D.; Lee, W.P. X protein of hepatitis B virus functions as a transcriptional corepressor on the human telomerase promoter. Hepatology, 2007, 46(2), 402-413.
[http://dx.doi.org/10.1002/hep.21675] [PMID: 17559154]
[72]
Lee, W.P.; Lan, K.H.; Li, C.P.; Chao, Y.; Lin, H.C.; Lee, S.D. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett., 2016, 375(1), 9-19.
[http://dx.doi.org/10.1016/j.canlet.2016.02.023] [PMID: 26902421]
[73]
Zheng, C.; Wu, H.; Jin, S.; Li, D.; Tan, S.; Zhu, X. Roles of Myc-associated zinc finger protein in malignant tumors. Asia Pac. J. Clin. Oncol., 2022, 18(6), 506-514.
[http://dx.doi.org/10.1111/ajco.13748] [PMID: 35098656]
[74]
Franz, H.; Greschik, H.; Willmann, D.; Ozretić, L.; Jilg, C.A.; Wardelmann, E.; Jung, M.; Buettner, R.; Schüle, R. The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget, 2015, 6(7), 4773-4789.
[http://dx.doi.org/10.18632/oncotarget.3000] [PMID: 25749382]
[75]
Zhao, X.; Ye, N.; Feng, X.; Ju, H.; Liu, R.; Lu, W. MicroRNA-29b-3p Inhibits the Migration and Invasion of Gastric Cancer Cells by Regulating the Autophagy-Associated Protein MAZ. OncoTargets Ther., 2021, 14, 3239-3249.
[http://dx.doi.org/10.2147/OTT.S274215] [PMID: 34040389]
[76]
Luo, W.; Zhu, X.; Liu, W.; Ren, Y.; Bei, C.; Qin, L.; Miao, X.; Tang, F.; Tang, G.; Tan, S. MYC associated zinc finger protein promotes the invasion and metastasis of hepatocellular carcinoma by inducing epithelial mesenchymal transition. Oncotarget, 2016, 7(52), 86420-86432.
[http://dx.doi.org/10.18632/oncotarget.13416] [PMID: 27861158]