Repurposing of Antidiarrheal Loperamide for Treating Melanoma by Inducing Cell Apoptosis and Cell Metastasis Suppression In vitro and In vivo

Page: [1015 - 1030] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Melanoma is the most common skin tumor worldwide and still lacks effective therapeutic agents in clinical practice. Repurposing of existing drugs for clinical tumor treatment is an attractive and effective strategy. Loperamide is a commonly used anti-diarrheal drug with excellent safety profiles. However, the affection and mechanism of loperamide in melanoma remain unknown. Herein, the potential anti-melanoma effects and mechanism of loperamide were investigated in vitro and in vivo.

Methods: In the present study, we demonstrated that loperamide possessed a strong inhibition in cell viability and proliferation in melanoma using MTT, colony formation and EUD incorporation assays. Meanwhile, xenograft tumor models were established to investigate the anti-melanoma activity of loperamide in vivo. Moreover, the effects of loperamide on apoptosis in melanoma cells and potential mechanisms were explored by Annexin V-FITC apoptosis detection, cell cycle, mitochondrial membrane potential assay, reactive oxygen species level detection, and apoptosis-correlation proteins analysis. Furthermore, loperamide-suppressed melanoma metastasis was studied by migration and invasion assays. What’s more, immunohistochemical and immunofluorescence staining assays were applied to demonstrate the mechanism of loperamide against melanoma in vivo. Finally, we performed the analysis of routine blood and blood biochemical, as well as hematoxylin- eosin (H&E) staining, in order to investigate the safety properties of loperamide.

Results: Loperamide could observably inhibit melanoma cell proliferation in vitro and in vivo. Meanwhile, loperamide induced melanoma cell apoptosis by accumulation of the sub-G1 cells population, enhancement of reactive oxygen species level, depletion of mitochondrial membrane potential, and apoptosis-related protein activation in vitro. Of note, apoptosis-inducing effects were also observed in vivo. Subsequently, loperamide markedly restrained melanoma cell migration and invasion in vitro and in vivo. Ultimately, loperamide was witnessed to have an amicable safety profile.

Conclusion: These findings suggested that repurposing of loperamide might have great potential as a novel and safe alternative strategy to cure melanoma via inhibiting proliferation, inducing apoptosis and cell cycle arrest, and suppressing migration and invasion.

Graphical Abstract

[1]
Medhin, L.B.; Beasley, A.B.; Warburton, L.; Amanuel, B.; Gray, E.S. Extracellular vesicles as a liquid biopsy for melanoma: Are we there yet? Semin. Cancer Biol., 2023, 89, 92-98.
[http://dx.doi.org/10.1016/j.semcancer.2023.01.008] [PMID: 36706847]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Allen, K.J.H.; Malo, M.E.; Jiao, R.; Dadachova, E. Targeting melanin in melanoma with radionuclide therapy. Int. J. Mol. Sci., 2022, 23(17), 9520.
[http://dx.doi.org/10.3390/ijms23179520] [PMID: 36076924]
[4]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[5]
Reijers, I.L.M.; Menzies, A.M.; van Akkooi, A.C.J.; Versluis, J.M.; van den Heuvel, N.M.J.; Saw, R.P.M.; Pennington, T.E.; Kapiteijn, E.; van der Veldt, A.A.M.; Suijkerbuijk, K.P.M.; Hospers, G.A.P.; Rozeman, E.A.; Klop, W.M.C.; van Houdt, W.J.; Sikorska, K.; van der Hage, J.A.; Grünhagen, D.J.; Wouters, M.W.; Witkamp, A.J.; Zuur, C.L.; Lijnsvelt, J.M.; Torres Acosta, A.; Grijpink-Ongering, L.G.; Gonzalez, M.; Jóźwiak, K.; Bierman, C.; Shannon, K.F.; Ch’ng, S.; Colebatch, A.J.; Spillane, A.J.; Haanen, J.B.A.G.; Rawson, R.V.; van de Wiel, B.A.; van de Poll-Franse, L.V.; Scolyer, R.A.; Boekhout, A.H.; Long, G.V.; Blank, C.U. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: The PRADO trial. Nat. Med., 2022, 28(6), 1178-1188.
[http://dx.doi.org/10.1038/s41591-022-01851-x] [PMID: 35661157]
[6]
Sahu, A.; Wang, X.; Munson, P.; Klomp, J.P.G.; Wang, X.; Gu, S.S.; Han, Y.; Qian, G.; Nicol, P.; Zeng, Z.; Wang, C.; Tokheim, C.; Zhang, W.; Fu, J.; Wang, J.; Nair, N.U.; Rens, J.A.P.; Bourajjaj, M.; Jansen, B.; Leenders, I.; Lemmers, J.; Musters, M.; van Zanten, S.; van Zelst, L.; Worthington, J.; Liu, J.S.; Juric, D.; Meyer, C.A.; Oubrie, A.; Liu, X.S.; Fisher, D.E.; Flaherty, K.T. Discovery of targets for immune–metabolic antitumor drugs identifies estrogen-related receptor alpha. Cancer Discov., 2023, 13(3), 672-701.
[http://dx.doi.org/10.1158/2159-8290.CD-22-0244] [PMID: 36745048]
[7]
Shen, S.; Gao, Y.; Ouyang, Z.; Jia, B.; Shen, M.; Shi, X. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity. J. Control. Release, 2023, 355, 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.076] [PMID: 36736909]
[8]
Serratì, S.; Guida, M.; Di Fonte, R.; De Summa, S.; Strippoli, S.; Iacobazzi, R.M.; Quarta, A.; De Risi, I.; Guida, G.; Paradiso, A.; Porcelli, L.; Azzariti, A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol. Cancer, 2022, 21(1), 20.
[http://dx.doi.org/10.1186/s12943-021-01490-9] [PMID: 35042524]
[9]
Pasquali, S.; Hadjinicolaou, A.V.; Chiarion Sileni, V.; Rossi, C.R.; Mocellin, S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Libr., 2018, 2020(11), CD011123.
[http://dx.doi.org/10.1002/14651858.CD011123.pub2] [PMID: 29405038]
[10]
van Akkooi, A.C.J.; Blank, C.; Eggermont, A.M.M. Neo-adjuvant immunotherapy emerges as best medical practice, and will be the new standard of care for macroscopic stage III melanoma. Eur. J. Cancer, 2023, 182, 38-42.
[http://dx.doi.org/10.1016/j.ejca.2023.01.004] [PMID: 36738540]
[11]
Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Olofsson Bagge, R.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol., 2023, 20(2), 99-115.
[http://dx.doi.org/10.1038/s41571-022-00714-1] [PMID: 36600005]
[12]
Charpignon, M.L.; Vakulenko-Lagun, B.; Zheng, B.; Magdamo, C.; Su, B.; Evans, K.; Rodriguez, S.; Sokolov, A.; Boswell, S.; Sheu, Y.H.; Somai, M.; Middleton, L.; Hyman, B.T.; Betensky, R.A.; Finkelstein, S.N.; Welsch, R.E.; Tzoulaki, I.; Blacker, D.; Das, S.; Albers, M.W. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat. Commun., 2022, 13(1), 7652.
[http://dx.doi.org/10.1038/s41467-022-35157-w] [PMID: 36496454]
[13]
Bennett, D.F.; Goyala, A.; Statzer, C.; Beckett, C.W.; Tyshkovskiy, A.; Gladyshev, V.N.; Ewald, C.Y.; de Magalhães, J.P. Rilmenidine extends lifespan and healthspan in Caenorhabditis elegans via a nischarin I1-imidazoline receptor. Aging Cell, 2023, 22(2), e13774.
[http://dx.doi.org/10.1111/acel.13774] [PMID: 36670049]
[14]
Meco, D.; Attinà, G.; Mastrangelo, S.; Navarra, P.; Ruggiero, A. Emerging perspectives on the antiparasitic mebendazole as a repurposed drug for the treatment of brain cancers. Int. J. Mol. Sci., 2023, 24(2), 1334-13353.
[http://dx.doi.org/10.3390/ijms24021334] [PMID: 36674870]
[15]
Sezaki, M.; Huang, G. Repurposing immunosuppressants for antileukemia therapy. EMBO Mol. Med., 2023, 15(1), e17042.
[http://dx.doi.org/10.15252/emmm.202217042] [PMID: 36453114]
[16]
Chu, Q.; An, J.; Liu, P.; Song, Y.; Zhai, X.; Yang, R.; Niu, J.; Yang, C.; Li, B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J. Exp. Med., 2023, 220(3), e20221316.
[http://dx.doi.org/10.1084/jem.20221316] [PMID: 36520461]
[17]
Yang, K.; Yang, Y.; Fan, S.; Xia, J.; Zheng, Q.; Dong, X.; Liu, J.; Liu, Q.; Lei, L.; Zhang, Y.; Li, B.; Gao, Z.; Zhang, R.; Liu, B.; Wang, Z.; Zhou, X. DRONet: Effectiveness-driven drug repositioning framework using network embedding and ranking learning. Brief. Bioinform., 2023, 24(1), bbac518.
[http://dx.doi.org/10.1093/bib/bbac518] [PMID: 36562715]
[18]
Spitschak, A.; Gupta, S.; Singh, K.P.; Logotheti, S.; Pützer, B.M. Drug repurposing at the interface of melanoma immunotherapy and autoimmune disease. Pharmaceutics, 2022, 15(1), 83-108.
[http://dx.doi.org/10.3390/pharmaceutics15010083] [PMID: 36678712]
[19]
Bedoya-Cardona, J.E.; Rubio-Carrasquilla, M.; Ramírez-Velásquez, I.M.; Valdés-Tresanco, M.S.; Moreno, E. Identifying potential molecular targets in fungi based on (Dis)similarities in binding site architecture with proteins of the human pharmacolome. Molecules, 2023, 28(2), 692-708.
[http://dx.doi.org/10.3390/molecules28020692] [PMID: 36677748]
[20]
Ma, S.; Patell, R.; Miller, E.; Ren, S.; Marquez-Garcia, J.; Panoff, S.; Sharma, R.; Pinson, A.; Elavalakanar, P.; Weber, G.; Uhlmann, E.; Neuberg, D.; Soman, S.; Zwicker, J.I. Antiplatelet medications and intracranial hemorrhage in patients with primary brain tumors. J. Thromb. Haemost., 2023, 21(5), 1148-1155.
[http://dx.doi.org/10.1016/j.jtha.2023.01.031] [PMID: 36740041]
[21]
Majidi, A.; Na, R.; Jordan, S.J.; DeFazio, A.; Obermair, A.; Friedlander, M.; Grant, P.; Webb, P.M. Common analgesics and ovarian cancer survival: The Ovarian cancer prognosis and lifestyle (OPAL) study. J. Natl. Cancer Inst., 2023, 115(5), 570-577.
[http://dx.doi.org/10.1093/jnci/djac239] [PMID: 36744914]
[22]
Zhu, C.; Li, K.; Peng, X.X.; Yao, T.J.; Wang, Z.Y.; Hu, P.; Cai, D.; Liu, H.Y. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front. Immunol., 2022, 13, 1083788-1083794.
[http://dx.doi.org/10.3389/fimmu.2022.1083788] [PMID: 36561763]
[23]
Kralj, J.; Pernar Kovač, M.; Dabelić, S.; Polančec, D.S.; Wachtmeister, T.; Köhrer, K.; Brozovic, A. Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br. J. Cancer, 2023, 128(7), 1344-1359.
[http://dx.doi.org/10.1038/s41416-023-02140-1] [PMID: 36717670]
[24]
Lembo, A.; Sultan, S.; Chang, L.; Heidelbaugh, J.J.; Smalley, W.; Verne, G.N. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology, 2022, 163(1), 137-151.
[http://dx.doi.org/10.1053/j.gastro.2022.04.017] [PMID: 35738725]
[25]
Chan, A.; Ruiz-Borrego, M.; Marx, G.; Chien, A.J.; Rugo, H.S.; Brufsky, A.; Thirlwell, M.; Trudeau, M.; Bose, R.; García-Sáenz, J.A.; Egle, D.; Pistilli, B.; Wassermann, J.; Cheong, K.A.; Schnappauf, B.; Semsek, D.; Singer, C.F.; Foruzan, N.; DiPrimeo, D.; McCulloch, L.; Hurvitz, S.A.; Barcenas, C.H. Final findings from the CONTROL trial: Strategies to reduce the incidence and severity of neratinib-associated diarrhea in patients with HER2-positive early-stage breast cancer. Breast, 2023, 67, 94-101.
[http://dx.doi.org/10.1016/j.breast.2022.12.003] [PMID: 36702070]
[26]
He, X.; Zhu, L.; Li, S.; Chen, Z.; Zhao, X. Loperamide, an antidiarrheal agent, induces apoptosis and DNA damage in leukemia cells. Oncol. Lett., 2017, 15(1), 765-774.
[http://dx.doi.org/10.3892/ol.2017.7435] [PMID: 29399146]
[27]
Gong, X.W.; Xu, Y.H.; Chen, X.L.; Wang, Y.X. Loperamide, an antidiarrhea drug, has antitumor activity by inducing cell apoptosis. Pharmacol. Res., 2012, 65(3), 372-378.
[http://dx.doi.org/10.1016/j.phrs.2011.11.007] [PMID: 22119769]
[28]
Yang, S.; Zhang, Y.; Luo, Y.; Xu, B.; Yao, Y.; Deng, Y.; Yang, F.; Ye, T.; Wang, G.; Cheng, Z.; Zheng, Y.; Xie, Y. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed. Pharmacother., 2018, 103, 101-110.
[http://dx.doi.org/10.1016/j.biopha.2018.02.076] [PMID: 29635122]
[29]
Yang, S.; Gao, X.; He, Y.; Hu, Y.; Xu, B.; Cheng, Z.; Xiang, M.; Xie, Y. Applying an innovative biodegradable self-assembly nanomicelles to deliver α-mangostin for improving anti-melanoma activity. Cell Death Dis., 2019, 10(3), 146-159.
[http://dx.doi.org/10.1038/s41419-019-1323-9] [PMID: 30770785]
[30]
Li, W.; Jiang, W.S.; Su, Y.R.; Tu, K.W.; Zou, L.; Liao, C.R.; Wu, Q.; Wang, Z.H.; Zhong, Z.M.; Chen, J.T.; Zhu, S.Y. PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis., 2023, 14(2), 88.
[http://dx.doi.org/10.1038/s41419-023-05595-5] [PMID: 36750550]
[31]
Dong, P.; Shi, Q.; Peng, R.; Yuan, Y.; Xie, X. N,N-dimethyl chitosan oligosaccharide (DMCOS) promotes antifungal activity by causing mitochondrial damage. Carbohydr. Polym., 2023, 303, 120459.
[http://dx.doi.org/10.1016/j.carbpol.2022.120459] [PMID: 36657838]
[32]
Larrue, C.; Mouche, S.; Lin, S.; Simonetta, F.; Scheidegger, N.K.; Poulain, L.; Birsen, R.; Sarry, J.E.; Stegmaier, K.; Tamburini, J. Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia. Leukemia, 2023, 37(4), 765-775.
[http://dx.doi.org/10.1038/s41375-023-01835-x] [PMID: 36739349]
[33]
Zerhouni, M.; Piskounova, E. Running to outcompete metastasis. Cancer Res., 2022, 82(22), 4124-4125.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-2898] [PMID: 36377384]
[34]
Houles, T.; Lavoie, G.; Nourreddine, S.; Cheung, W.; Vaillancourt-Jean, É.; Guérin, C.M.; Bouttier, M.; Grondin, B.; Lin, S.; Saba-El-Leil, M.K.; Angers, S.; Meloche, S.; Roux, P.P. CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma. Nat. Commun., 2022, 13(1), 6457-6472.
[http://dx.doi.org/10.1038/s41467-022-34179-8] [PMID: 36309522]
[35]
Claps, G.; Faouzi, S.; Quidville, V.; Chehade, F.; Shen, S.; Vagner, S.; Robert, C. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol., 2022, 19(12), 749-762.
[http://dx.doi.org/10.1038/s41571-022-00686-2] [PMID: 36207413]
[36]
Onódi, Z.; Koch, S.; Rubinstein, J.; Ferdinandy, P.; Varga, Z.V. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br. J. Pharmacol., 2023, 180(6), 685-700.
[http://dx.doi.org/10.1111/bph.16001] [PMID: 36484549]
[37]
Schipper, L.J.; Zeverijn, L.J.; Garnett, M.J.; Voest, E.E. Can drug repurposing accelerate precision oncology? Cancer Discov., 2022, 12(7), 1634-1641.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0612] [PMID: 35642948]
[38]
Yin, Y.; Yu, X.; Feng, R.; Li, Y.; Zhao, Y.; Liu, Z. Drug repurposing applications to overcome male predominance via targeting G2/M checkpoint in human esophageal squamous cell carcinoma. Cancers, 2022, 14(23), 5854-5872.
[http://dx.doi.org/10.3390/cancers14235854] [PMID: 36497337]
[39]
Meyer, N.; Henkel, L.; Linder, B.; Zielke, S.; Tascher, G.; Trautmann, S.; Geisslinger, G.; Münch, C.; Fulda, S.; Tegeder, I.; Kögel, D. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy, 2021, 17(11), 3424-3443.
[http://dx.doi.org/10.1080/15548627.2021.1874208] [PMID: 33461384]
[40]
Zielke, S.; Meyer, N.; Mari, M.; Abou-El-Ardat, K.; Reggiori, F.; van Wijk, S.J.L.; Kögel, D.; Fulda, S. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis., 2018, 9(10), 994-1009.
[http://dx.doi.org/10.1038/s41419-018-1003-1] [PMID: 30250198]
[41]
Kim, I.Y.; Shim, M.J.; Lee, D.M.; Lee, A.R.; Kim, M.A.; Yoon, M.J.; Kwon, M.R.; Lee, H.I.; Seo, M.J.; Choi, Y.W.; Choi, K.S. Loperamide overcomes the resistance of colon cancer cells to bortezomib by inducing CHOP-mediated paraptosis-like cell death. Biochem. Pharmacol., 2019, 162, 41-54.
[http://dx.doi.org/10.1016/j.bcp.2018.12.006] [PMID: 30529689]
[42]
Wang, Z.; Mačáková, M.; Bugai, A.; Kuznetsov, S.G.; Hassinen, A.; Lenasi, T.; Potdar, S.; Friedel, C.C.; Barborič, M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res., 2023, 51(4), 1687-1706.
[http://dx.doi.org/10.1093/nar/gkad001] [PMID: 36727434]
[43]
Prasad, D.; Illek, K.; Fischer, F.; Holstein, K.; Classen, A.K. Bilateral JNK activation is a hallmark of interface surveillance and promotes elimination of aberrant cells. eLife, 2023, 12, e80809.
[http://dx.doi.org/10.7554/eLife.80809] [PMID: 36744859]
[44]
Wang, Z.; Hu, H.; Heitink, L.; Rogers, K.; You, Y.; Tan, T.; Suen, C.L.W.; Garnham, A.; Chen, H.; Lieschke, E.; Diepstraten, S.T.; Chang, C.; Chen, T.; Moujalled, D.; Sutherland, K.; Lessene, G.; Sieber, O.M.; Visvader, J.; Kelly, G.L.; Strasser, A. The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ., 2023, 30(4), 1033-1046.
[http://dx.doi.org/10.1038/s41418-023-01122-3] [PMID: 36739334]
[45]
Diepstraten, S.T.; Young, S.; La Marca, J.E.; Wang, Z.; Kluck, R.M.; Strasser, A.; Kelly, G.L. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ., 2023, 30(4), 1005-1017.
[http://dx.doi.org/10.1038/s41418-023-01117-0] [PMID: 36755070]
[46]
Jung-Garcia, Y.; Maiques, O.; Monger, J.; Rodriguez-Hernandez, I.; Fanshawe, B.; Domart, M.C.; Renshaw, M.J.; Marti, R.M.; Matias-Guiu, X.; Collinson, L.M.; Sanz-Moreno, V.; Carlton, J.G. LAP1 supports nuclear adaptability during constrained melanoma cell migration and invasion. Nat. Cell Biol., 2023, 25(1), 108-119.
[http://dx.doi.org/10.1038/s41556-022-01042-3] [PMID: 36624187]