Enhancement of Wheat (Triticum aestivum L.) Growth and Yield Attributes in a Subtropical Humid Climate through Treated Ganga Sludge-based Organic Fertilizers
  • * (Excluding Mailing and Handling)

Abstract

Background: Sewage sludge is a by-product of urbanization that poses environmental and health challenges. However, it can also be a valuable source of organic matter and nutrients for agriculture. Method: This study aimed to assess the potential of five types of organic fertilizers derived from treated Ganga sludge on the growth of wheat plants. The Patanjali Organic Research Institute has developed five types of granulated organic fertilizer from the stabilized Ganga sludge.

Results: The results showed that the organic fertilizers significantly improved the wheat performance in terms of plant height, biomass accumulation, chlorophyll content, leaf area and other yield parameters. Furthermore, the fertilizers ameliorated soil physicochemical attributes and augmented the availability of macro- and micronutrients. Importantly, levels of heavy metals in soil and wheat grains remained within permissible limits, affirming the safety and appropriateness of these fertilizers for wheat cultivation.

Conclusion: This study underscores the efficient utilization of treated Ganga sludge as a valuable organic fertilizer source, proposing a sustainable and ecologically sound approach for sewage sludge management and enhancement of agricultural productivity.

[1]
Arancon, R.A.D.; Lin, C.S.K.; Chan, K.M.; Kwan, T.H.; Luque, R. Advances on waste valorization: New horizons for a more sustainable society: Alternative technologies. In: Waste Management and Valorization; Springer, 2016.
[http://dx.doi.org/10.1201/b19941-4]
[2]
Angin, I.; Aslantas, R.; Gunes, A.; Kose, M.; Ozkan, G. Effects of sewage sludge amendment on some soil properties, growth, yield and nutrient content of raspberry (Rubus idaeus L.). Erwerbs-Obstbau, 2017, 59(2), 93-99.
[http://dx.doi.org/10.1007/s10341-016-0303-9]
[3]
Singh, R.P.; Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng., 2010, 36(7), 969-972.
[http://dx.doi.org/10.1016/j.ecoleng.2010.03.008]
[4]
Singh, R.P.; Agrawal, M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol. Environ. Saf., 2010, 73(4), 632-641.
[http://dx.doi.org/10.1016/j.ecoenv.2010.01.020] [PMID: 20163857]
[5]
Cocarta, D.M.; Subtirelu, V.R.; Badea, A. Effect of sewage sludge application on wheat crop productivity and heavy metal accumulation in soil and wheat grain. Environ. Eng. Manag. J., 2017, 16(5), 1093-1100.
[http://dx.doi.org/10.30638/eemj.2017.112]
[6]
Muter, O.; Dubova, L.; Kassien, O.; Cakane, J.; Alsina, I. Application of the sewage sludge in agriculture: Soil fertility, technoeconomic, and life-cycle assessment.In: Hazardous Waste Management; IntechOpen, 2022.
[7]
Wu, Z.; Jiang, Y.; Guo, W.; Jin, J.; Wu, M.; Shen, D.; Long, Y. The long-term performance of concrete amended with municipal sewage sludge incineration ash. Environmen. Technol. Innova., 2021, 23, 101574.
[http://dx.doi.org/10.1016/j.eti.2021.101574]
[8]
Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng., 2014, 69, 17-24.
[http://dx.doi.org/10.1016/j.ecoleng.2014.03.066]
[9]
Dai, J.Y.; Chen, L.; Zhao, J.F.; Ma, N. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. J. Environ. Sci. , 2006, 18(6), 1094-1100.
[http://dx.doi.org/10.1016/S1001-0742(06)60045-4] [PMID: 17294948]
[10]
Yakamercan, E.; Ari, A.; Aygün, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean. Prod., 2021, 319, 128568.
[http://dx.doi.org/10.1016/j.jclepro.2021.128568]
[11]
Zhang, B.; Zhou, X.; Ren, X.; Hu, X.; Ji, B. Recent research on municipal sludge as soil fertilizer in China: A review. Water Air Soil Pollut., 2023, 234(2), 119.
[http://dx.doi.org/10.1007/s11270-023-06142-w] [PMID: 36776548]
[12]
Elmi, A.; Al-Khaldy, A.; AlOlayan, M. Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. J. Clean. Prod., 2020, 250, 119512.
[http://dx.doi.org/10.1016/j.jclepro.2019.119512]
[13]
Pereira, I.D.S.; Bamberg, A.L.; Oliveira de Sousa, R.; Monteiro, A.B.; Martinazzo, R.; Posser Silveira, C.A.; de Oliveira Silveira, A. Agricultural use and pH correction of anaerobic sewage sludge with acid pH. J. Environ. Manage., 2020, 275, 111203.
[http://dx.doi.org/10.1016/j.jenvman.2020.111203] [PMID: 32829264]
[14]
Kominko, H.; Gorazda, K.; Wzorek, Z. Effect of sewage sludge-based fertilizers on biomass growth and heavy metal accumulation in plants. J. Environ. Manage., 2022, 305, 114417.
[http://dx.doi.org/10.1016/j.jenvman.2021.114417] [PMID: 34991023]
[15]
Abba, A.; Collivignarelli, M.C.; Padovani, S.; Frascarolo, M.; Sciunnach, D.; Turconi, M.; Orlando, M. Recovery of sewage sludge on agricultural land in Lombardy: Current issues and regulatory scenarios. Environ. Eng. Manag. J., 2015, 14(7), 1477-1486.
[http://dx.doi.org/10.30638/eemj.2015.159]
[16]
Iticescu, C.; Georgescu, L.P.; Gurau, G.; Murarescu, M.; Dima, D.; Murariu, G.; Gheorghies, C. Methods to reduce environmental impact of municipal waste water sewage sludge. Environ. Eng. Manag. J., 2015, 10, 2457-2463.
[17]
Rivier, P.A.; Havranek, I.; Coutris, C.; Norli, H.R.; Joner, E.J. Transfer of organic pollutants from sewage sludge to earthworms and barley under field conditions. Chemosphere, 2019, 222, 954-960.
[http://dx.doi.org/10.1016/j.chemosphere.2019.02.010]
[18]
Hoang, S.A.; Bolan, N.; Madhubashani, A.M.P.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M.B.; Mickan, B.S.; Rinklebe, J.; Siddique, K.H.M. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environ. Pollut., 2022, 293, 118564.
[http://dx.doi.org/10.1016/j.envpol.2021.118564] [PMID: 34838711]
[19]
Anand, U.; Li, X.; Sunita, K.; Lokhandwala, S.; Gautam, P.; Suresh, S.; Sarma, H.; Vellingiri, B.; Dey, A.; Bontempi, E.; Jiang, G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. Environ. Res., 2022, 203, 111839.
[http://dx.doi.org/10.1016/j.envres.2021.111839] [PMID: 34358502]
[20]
Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. , 2021, 11(2), 548.
[http://dx.doi.org/10.3390/app11020548]
[21]
Kominko, H.; Gorazda, K.; Wzorek, Z. Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops. Waste Manag., 2021, 136, 57-66.
[http://dx.doi.org/10.1016/j.wasman.2021.09.040] [PMID: 34637979]
[22]
Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of urban sewage sludge amendment on agricultural soil parameters. Environmen. Technol. Innov., 2021, 23, 101642.
[http://dx.doi.org/10.1016/j.eti.2021.101642]
[23]
Ramadas, S.; Kumar, T.K.; Singh, G.P. Wheat production in India: Trends and prospects. In: Recent advances in grain crops research; IntechOpen, 2019.
[24]
Department of Agriculture & Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India 2021. Available from: https://farmer.gov.in/m_cropstaticswheat.aspx
[25]
Brar, B.S. Analytical Techniques in Soils, Plants, Seeds, Fertilizers and Water. Practical Manual (Soils 435); Department of Soil Science, College of Agriculture, Punjab Agricultural University: Ludhiana, 2017, p. 141004.
[26]
Shang, L.; Wan, L.; Zhou, X.; Li, S.; Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS One, 2020, 15(10), e0240559.
[http://dx.doi.org/10.1371/journal.pone.0240559] [PMID: 33057441]
[27]
Zhong, W.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.; Huang, Q.; Shen, W. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil, 2010, 326, 511-522.
[http://dx.doi.org/10.1007/s11104-009-9988-y]
[28]
Wu, M.; Qin, H.; Chen, Z.; Wu, J.; Wei, W. Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol. Fertil. Soils, 2011, 47(4), 397-405.
[http://dx.doi.org/10.1007/s00374-010-0535-z]
[29]
Daquiado, A.R.; Kuppusamy, S.; Kim, S.Y.; Kim, J.H.; Yoon, Y.E.; Kim, P.J.; Oh, S.H.; Kwak, Y.S.; Lee, Y.B. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Appl. Soil Ecol., 2016, 108, 84-91.
[http://dx.doi.org/10.1016/j.apsoil.2016.08.006]
[30]
Chen, Y.; Zhang, X.; He, H.; Xie, H.; Yan, Y.; Zhu, P.; Ren, J.; Wang, L. Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. J. Soils Sediments, 2010, 10(6), 1018-1026.
[http://dx.doi.org/10.1007/s11368-009-0123-8]
[31]
Wang, J.; Zhang, X.; Yuan, M.; Wu, G.; Sun, Y. Effects of partial replacement of nitrogen fertilizer with organic fertilizer on rice growth, nitrogen utilization efficiency and soil properties in the yangtze river basin. Life, 2023, 13(3), 624.
[http://dx.doi.org/10.3390/life13030624] [PMID: 36983780]
[32]
Wang, F.; Wang, Z.; Kou, C.; Ma, Z.; Zhao, D. Responses of wheat yield, macro-and micro-nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China Plain. PLoS One, 2016, 11(1), e0146453.
[http://dx.doi.org/10.1371/journal.pone.0146453] [PMID: 26771517]
[33]
Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol., 2011, 156(3), 997-1005.
[http://dx.doi.org/10.1104/pp.111.175232] [PMID: 21571668]
[34]
Mnthambala, F.; Tilley, E.; Tyrrel, S.; Sakrabani, R. Effect of various organic fertilisers on phosphorus mineralisation, use efficiency and maize yield. Resources, 2022, 11(10), 86.
[http://dx.doi.org/10.3390/resources11100086]
[35]
Olaniyan, F.T.; Alori, E.T.; Adekiya, A.O.; Ayorinde, B.B.; Daramola, F.Y.; Osemwegie, O.O.; Babalola, O.O. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann. Microbiol., 2022, 72(1), 45.
[http://dx.doi.org/10.1186/s13213-022-01701-8]
[36]
Zhu, Z.L. Mineralization of soil nitrogen.In: Nitrogen in Soils of China. Developments in Plant and Soil Sciences; Zhu, Zl.; Wen, Qx.; Freney, J.R., Eds.; Springer: Dordrecht, 1997, Vol. 74, .
[http://dx.doi.org/10.1007/978-94-011-5636-3_3]
[37]
Jat, L.; Naresh, R.K.; Bhatt, R.; Chandra, M.S.; Singh, S.; Gupta, S.K.; Alataway, A.; Dewidar, A.Z.; Mattar, M.A. Wheat nutrient management strategies to increase productivity, profitability and quality on sandy loam soils. Agronomy , 2022, 12(11), 2807.
[http://dx.doi.org/10.3390/agronomy12112807]
[38]
Pal, R.K.; Singh, A.K.; Raj, P.; Kumar, P.; Anshuman, K.; Kumar, A.; Yadav, P. Effect of direction of sowing on growth and yield of different wheat (Triticum aestivum L.) cultivar in Eastern Uttar Pradesh. Pharma. Innov. J., 2021, 10(10), 917-920.
[39]
Boudjabi, S.; Kribaa, M.; Chenchouni, H. Sewage sludge fertilization alleviates drought stress and improves physiological adaptation and yield performances in Durum Wheat (Triticum durum): A double-edged sword. J. King Saud Univ. Sci., 2019, 31(3), 336-344.
[http://dx.doi.org/10.1016/j.jksus.2017.12.012]
[40]
Jamal, A.; Hussain, İ.; Sarir, M.S.; Sharif, M.; Fawad, M. Investigating combination and individual impact of phosphorus and humic acid on yield of wheat and some soil properties. Turk. J. Agricul. Nat. Sci., 2018, 5(4), 492-500.
[http://dx.doi.org/10.30910/turkjans.471297]
[41]
Khan, I. Amanullah; Jamal, A.; Mihoub, A.; Farooq, O.; Farhan Saeed, M.; Roberto, M.; Radicetti, E.; Zia, A.; Azam, M. Partial substitution of chemical fertilizers with organic supplements increased wheat productivity and profitability under limited and assured irrigation regimes. Agriculture, 2022, 12(11), 1754.
[http://dx.doi.org/10.3390/agriculture12111754]
[42]
Banerjee, M.; Rai, R.K.; Maiti, D. Effect of PSB and VAM with different sources of phosphatic fertilizer on growth attributes, Chlorophyll content and yield of wheat. Int. J. Bio-Resour. Stress Manag., 2011, 2(1), 72-77.
[43]
Zare-Maivan, H.; Khanpour-Ardestani, N.; Ghanati, F. Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. J. Plant Nutr., 2017, 40(14), 2026-2032.
[http://dx.doi.org/10.1080/01904167.2017.1346119]
[44]
Sharma, R.; Agarawal, A. Influence of organic fertilizers on total chlorophyll content and yield of wheat (Triticum aestivum). Ecology. Environ. Conserv., 2009, 15(3), 539-541.
[45]
Al-Amin, M.A.; Hasan, A.K.; Ali, M.H.; Nessa, S.; Islam, M.N. Effect of mulching and organic manure on growth and yield performance of wheat. Archives of agriculture and environmental. Science, 2017, 2(3), 134-140.
[46]
Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci., 2019, 10, 1068.
[http://dx.doi.org/10.3389/fpls.2019.01068] [PMID: 31608075]
[47]
Khan, Y.; Shah, S.; Hui, T. The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops-A review. Agronomy , 2022, 12(9), 2191.
[http://dx.doi.org/10.3390/agronomy12092191]
[48]
Mohamed, M.F.; Thalooth, A.T.; Elewa, T.A.; Ahmed, A.G. Yield and nutrient status of wheat plants (Triticum aestivum) as affected by sludge, compost, and biofertilizers under newly reclaimed soil. Bull. Natl. Res. Cent., 2019, 43(1), 31.
[http://dx.doi.org/10.1186/s42269-019-0069-y]
[49]
Zhou, Z.; Zhang, S.; Jiang, N.; Xiu, W.; Zhao, J.; Yang, D. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Front. Environ. Sci., 2022, 10, 1058071.
[http://dx.doi.org/10.3389/fenvs.2022.1058071]
[50]
Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res., 2007, 96(1-2), 166-173.
[http://dx.doi.org/10.1016/j.still.2007.05.005]
[51]
Rutkowska, B.; Szulc, W.; Labetowicz, J. Influence of soil fertilization on concentration of microelements in soil solution of sandy soil. J. Elem., 2009, 14, 349-355.
[52]
Rutkowska, B.; Szulc, W.; Sosulski, T.; Stępień, W. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ., 2014, 60(5), 198-203.
[http://dx.doi.org/10.17221/914/2013-PSE]
[53]
Ai, C.; Liang, G.; Sun, J.; Wang, X.; Zhou, W. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma, 2012, 173-174, 330-338.
[http://dx.doi.org/10.1016/j.geoderma.2011.07.020]
[54]
Keshavarzi, B.; Moore, F.; Ansari, M.; Rastegari Mehr, M.; Kaabi, H.; Kermani, M. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran. Environ. Monit. Assess., 2015, 187(1), 4113.
[http://dx.doi.org/10.1007/s10661-014-4113-y] [PMID: 25416129]
[55]
Marcussen, H.; Holm, P.E.; Strobel, B.W.; Hansen, H.C.B. Nickel sorption to goethite and montmorillonite in presence of citrate. Environ. Sci. Technol., 2009, 43(4), 1122-1127.
[http://dx.doi.org/10.1021/es801970z] [PMID: 19320168]
[56]
Singh, A.; Agrawal, M.; Marshall, F.M. The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecol. Eng., 2010, 36(12), 1733-1740.
[http://dx.doi.org/10.1016/j.ecoleng.2010.07.021]
[57]
Lu, Q.; Bunn, R.; Whitney, E.; Feng, Y.; DeVetter, L.W.; Tao, H. Arbuscular mycorrhizae influence raspberry growth and soil fertility under conventional and organic fertilization. Front. Microbiol., 2023, 14, 1083319.
[http://dx.doi.org/10.3389/fmicb.2023.1083319] [PMID: 37260690]
[58]
Coccina, A.; Cavagnaro, T.R.; Pellegrino, E.; Ercoli, L.; McLaughlin, M.J.; Watts-Williams, S.J. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol., 2019, 19(1), 133.
[http://dx.doi.org/10.1186/s12870-019-1741-y] [PMID: 30967108]
[59]
Zhang, S.; Li, Z.; Liu, J.; Li, Q.; Yang, X. Long-term effects of straw and manure on crop micronutrient nutrition under a wheat-maize cropping system. J. Plant Nutr., 2015, 38(5), 742-753.
[http://dx.doi.org/10.1080/01904167.2014.957390]
[60]
Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Gupta, R.K.; Verma, V.; Kaur, M.; Behera, S.K.; Singh, P. Residual effect of organic and inorganic fertilizers on growth, yield and nutrient uptake in wheat under a basmati rice-wheat cropping system in north-western India. Agriculture, 2023, 13(3), 556.
[http://dx.doi.org/10.3390/agriculture13030556]
[61]
Barbeiro, G.; Cutaia, L.; Librici, V. Treatment and disposal of sewage sludge: Comparative life cycle assessment on Italian case study. Environ. Eng. Manag. J., 2013, 12, 7-10.
[62]
Przewrocki, P.; Kulczycka, J.; Wzorek, Z.; Kowalski, Z.; Gorazda, K.; Jodko, M. Risk analysis of sewage sludge - Poland and EU comparative approach. Pol. J. Environ. Stud., 2004, 13, 237-244.
[63]
Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci., 2017, 5, 64.
[http://dx.doi.org/10.3389/fenvs.2017.00064]
[64]
Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 2019, 216, 449-462.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.066] [PMID: 30384315]
[65]
Hindarwati, Y.; Soeprobowati, T.R. Heavy metal content in terraced rice fields at sruwen tengaran semarang-indonesia.In: E3S Web of Conferences; EDP Sciences, , 2018, 31, p. 03009.
[http://dx.doi.org/10.1051/e3sconf/20183103009]
[66]
FSSAI Food Safety and Standards (Contaminants, Toxins and residues) Regulations; Ministry of Health and Family Welfare: India, 2011.
[67]
Altenbach, S.B.; Kothari, K.M.; Lieu, D. Environmental conditions during wheat grain development alters temporal regulation of major gluten protein genes. Cereal Chem., 2002, 79(2), 279-285.
[http://dx.doi.org/10.1094/CCHEM.2002.79.2.279]
[68]
Dupont, F.M.; Altenbach, S.B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci., 2003, 38(2), 133-146.
[http://dx.doi.org/10.1016/S0733-5210(03)00030-4]
[69]
Tea, I.; Genter, T.; Naulet, N.; Boyer, V.; Lummerzheim, M.; Kleiber, D. Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing properties. Cereal Chem., 2004, 81(6), 759-766.
[http://dx.doi.org/10.1094/CCHEM.2004.81.6.759]
[70]
Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust. J. Crop Sci., 2010, 4(6), 384-389.
[71]
Seleiman, M.F.; Ibrahim, M.E.; Darwish, I.H.; Hardan, A.N.M. Effect of mineral and organic fertilizers on yieldand quality of some egyptian and omani wheat cultivars. Menoufia J. Plant Prod., 2021, 6, 351-372.
[72]
Amal, H. Effect of organic and mineral fertilization on wheat yield and quality. J. Soil Sci. and Agric. Eng. Mansoura Univ., 2016, 7(11), 829-836.