Recent Advances in Food, Nutrition & Agriculture

Author(s): Madhu Rani and Sonia Kapoor*

DOI: 10.2174/012772574X282571231227054442

DownloadDownload PDF Flyer Cite As
Diverse Farming Systems and their Impact on Macro and Microelement Content of Vegetables & Crops

Page: [204 - 214] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The present study investigates the effect of conventional and organic farming systems on the nutritional profile of crops. Different crops, namely –millet, sorghum, sesame, mustard, fenugreek, berseem, pea, potato, and onion were cultivated through conventional agriculture in which chemical fertilizers like urea, DAP (Diammonium Phosphate) and pesticides were used and organic farming in which organic fertilizers like seaweed and vermicompost were used.

Objective: The experimental study was done on a field in north India from 2019 to 2021 in six different seasons, and the nutrient profile of the crops with respect to macroelements (S, K, Na, P, Ca, Mg) and microelements (B, Cu, Fe, Mn, Zn, Al) was compared.

Methods: Macro and microelements were analyzed by Element analyzer and ICP-OES in both types of farming systems. The content of macro, as well as microelements, was found to be significantly higher in all the organically produced crops as compared to the conventionally grown crops.

Results: Significant differences were observed in the macroelement content of organic onion (P- 900 mg/kg, K-2000mg/kg) and organic pea (K 2250 mg/kg) as compared to the content of conventionally grown onion (P-756 mg/kg, K- 1550 mg/kg) and pea (K-2000 mg/kg). Similarly, microelement content in the organic sesame (Fe - 3.12 mg/kg), organic millet (Fe- 2.19 mg/kg), and organic potato (Zn-200 mg/kg) was higher as compared to conventionally grown sesame (Fe 2.05 mg/kg), millet (Fe- 1.56 mg/kg) and potato (Zn 167 mg/kg).

Conclusion: This investigation concludes that crops with optimum nutritional content can be produced through organic farming with minimum input and maximum production.

Keywords: Element analyzer, macroelements, microelements, organic farming, seaweed, vermicompost.

Graphical Abstract

[1]
Peltzer, K.; Phaswana-Mafuya, N. Fruit and vegetable intake and associated factors in older adults in South Africa. Glob. Health Action, 2012, 5(1), 18668.
[http://dx.doi.org/10.3402/gha.v5i0.18668] [PMID: 23195518]
[2]
Agudo, A. Measuring intake of fruits and vegetables. 2005. Available from: https://www.who.int/dietphysicalactivity/publications/f&v_intake measurement.pdf?ua=1 (Accessed on: 10 November 2020).
[3]
Hanif, R.; Iqbal, Z.; Iqbal, M.; Hanif, S.; Rasheed, M. Use of vegetables as nutritional food: Role in human health. J. Agric. Biol. Sci., 2006, 1, 18-22.
[4]
Abellán, Á.; Domínguez-Perles, R.; Moreno, D.; García-Viguera, C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients, 2019, 11(2), 429.
[http://dx.doi.org/10.3390/nu11020429] [PMID: 30791362]
[5]
Martins, A.C.; Krum, B.N.; Queirós, L. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects. J. Agric. Food Chem., 2020, 68(46), 12893-12903.
[http://dx.doi.org/10.1021/acs.jafc.0c00641] [PMID: 32298096]
[6]
Sanlier, N.; Guler Saban, M. The benefits of Brassica vegetables on human health. J Human Health Res, 2018, 1(104), 1-13.
[7]
Glantz, K. IARC handbooks of cancer prevention Volume 8: Fruit and Vegetables. Lyon: IARC Press 2005, 1-19.
[8]
Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr., 2012, 3(4), 506-516.
[http://dx.doi.org/10.3945/an.112.002154] [PMID: 22797986]
[9]
Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal., 2017, 56, 93-103.
[http://dx.doi.org/10.1016/j.jfca.2016.11.012]
[10]
Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med., 2001, 7(2), 161-173.
[http://dx.doi.org/10.1089/107555301750164244] [PMID: 11327522]
[11]
Mohammadi, S.; Pourakbar, L.; Moghaddam, S.S.; Popović-Djordjević, J. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Ecotoxicol. Environ. Saf., 2021, 208, 111607.
[12]
Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr., 2002, 42(1), 1-34.
[http://dx.doi.org/10.1080/10408690290825439] [PMID: 11833635]
[13]
Vlahović, B.; Užar, D.; Škatarić, G. Comparative analysis of organic food markets in the Republic of Serbia and the neighboring countries. Contemporary Agriculture, 2019, 68(1-2), 34-42.
[http://dx.doi.org/10.2478/contagri-2019-0007]
[14]
Golubkina, N.; Seredin, T.; Antoshkina, M.; Kosheleva, O.; Teliban, G.; Caruso, G. Yield, quality, antioxidants and elemental composition of new leek cultivars under greenhouse organic or conventional system. Horticulturae, 2018, 4(4), 39.
[http://dx.doi.org/10.3390/horticulturae4040039]
[15]
Hansen, H. Comparison of chemical composition and taste of biodynamically and conventionally grown vegetables. Qual Plant - Pl Fd Hum Nutr , 1981, 30, 203-11.
[http://dx.doi.org/ 10.1007/BF01094025]
[16]
Leclerc, J.; Miller, M.L.; Joliet, E.; Rocquelin, G. Vitamin and mineral contents of carrot and celeriac under mineral or organic fertilization. Biol. Agric. Hortic., 1991, 7(4), 339-348.
[http://dx.doi.org/10.1080/01448765.1991.9754564]
[17]
Lombardo, S.; Pandino, G.; Mauromicale, G. The mineral profile in organically and conventionally grown “early” crop potato tubers. Sci. Hortic. , 2014, 167, 169-173.
[http://dx.doi.org/10.1016/j.scienta.2014.01.006]
[18]
Popović-Djordjević, J.; Marjanović, Ž.S. Essential elements as a distinguishing factor between mycorrhizal potentials of two cohabiting truffle species in riparian forest habitat in Serbia. Chem. Biodivers., 2019, 16, e1800693.
[http://dx.doi.org/10.1002/cbdv.201800693]
[19]
Dini, I.; Tenore, G.C.; Dini, A. Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds. Food Chem., 2008, 107(2), 613-621.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.053]
[20]
White, P.J.; Bradshaw, J.E.; Finlay, M. Relationships between yield and mineral concentrations in potato tubers. HortScience, 2009, 44(1), 6-11.
[http://dx.doi.org/10.21273/HORTSCI.44.1.6]
[21]
Jha, A.K.; Rani, M.; Padbhushan, R.; Kumar, A.; Kumar, R. Combined application of azolla and inorganic potassium fertilizer influence the growth, yield and storability of onion in alluvial soil. Commun. Soil Sci. Plant Anal., 2023, 54(12), 1727-1740.
[http://dx.doi.org/10.1080/00103624.2023.2211091]
[22]
Yahia, E.M.; Maldonado Celis, M.E.; Svendsen, M. The contribution of fruit and vegetable consumption to human health. In: Fruit and vegetable phytochemicals: chemistry and huan health. 2nd ed; Yahia, E.M., Ed.; Wiley, 2018; pp. 3-5.
[23]
Quintaes, K.D.; Diez‐Garcia, R.W. The importance of minerals in the human diet. In: Handbook of mineral elements in food. , 2015, pp. 1-21.
[http://dx.doi.org/10.1002/9781118654316.ch1]
[24]
Hoo Fung, L.A.; Antoine, J.M.R.; Grant, C.N.; Lalor, G.C. Vegetables and fruits. In: Handbook of mineral elements in food; de la Guardia, M.; Garrigues, S., Eds.; Wiley: UK, 2015; pp. 489-520.
[http://dx.doi.org/10.1002/9781118654316.ch21]
[25]
Rowan, C.A.; Zajicek, O.T.; Calabrese, E.J. Dry ashing vegetables for the determination of sodium and potassium by atomic absorption spectrometry. Anal. Chem., 1982, 54(1), 149-151.
[http://dx.doi.org/10.1021/ac00238a047]
[26]
Doleman, J.F.; Grisar, K.; Van Liedekerke, L. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake. Food Chem., 2017, 234, 38-45.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.098] [PMID: 28551250]
[27]
Hewlings, S.; Kalman, D. Sulfur in human health. EC Nutrition, 2019, 14(9), 785-791.
[28]
Holland, B.; McCance, R.A.; Widdowson, E.M. Vegetables, herbs and spices: Fifth supplement to McCance and Widdowson’s. In: The Composition of Foods; Royal Society of Chemistry, 1991, p. 5.
[29]
De la Guardia, M.; Garrigues, S. Handbook of mineral elements in food. John Wiley & Sons, 2015.
[http://dx.doi.org/10.1002/9781118654316]
[30]
Orlovius, K.; McHoul, J. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet. J. Plant Nutr., 2015, 38(13), 2044-2054.
[http://dx.doi.org/10.1080/01904167.2014.958167]
[31]
White, P.J.; Broadley, M.R. Biofortification of crops with seven] mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 2009, 182(1), 49-84.
[http://dx.doi.org/10.1111/j.1469-8137.2008.02738.x] [PMID: 19192191]
[32]
Begum, S.; Ramappa, K.T.; Nidoni, U.; Hiregoudar, S.; Ramesh, G. Proximate composition, physical properties and bio-chemical traits of fresh fenugreek leafy vegetables: A comprehensive study. Int J Environ Clim, 2023, 13(9), 1252-1259.
[http://dx.doi.org/10.9734/ijecc/2023/v13i92353]
[33]
Chhiroliya, J.K.; Bhargava, A.; Morya, R.; Gupta, P.K. Effect of plant growth regulators and biofertilizer on the yield of fenugreek (Trigonella foenum-graecum L.). Int J Environ Clim Chang, 2023, 13(11), 3206-3212.
[http://dx.doi.org/10.9734/ijecc/2023/v13i113492]
[34]
Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Masunaga, S. Trace metals in soil and vegetables and associated health risk assessment. Environ. Monit. Assess., 2014, 186(12), 8727-8739.
[http://dx.doi.org/10.1007/s10661-014-4040-y] [PMID: 25204898]
[35]
Istrate, A.M.R.; Cojocariu, M.; Teliban, G.C.; Cojocaru, A.; Stoleru, V. Quality and yield of edible vegetables from landscape design. Horticulturae, 2023, 9(6), 615.
[http://dx.doi.org/10.3390/horticulturae9060615]
[36]
Chen, P.; Bornhorst, J.; Aschner, M.A. Manganese metabolism in humans. Front. Biosci., 2018, 23, 1655-1679.
[http://dx.doi.org/10.2741/4665]
[37]
Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med., 2015, 372(19), 1832-1843.
[http://dx.doi.org/10.1056/NEJMra1401038] [PMID: 25946282]
[38]
Peto, M.V. Aluminium and iron in humans: Bioaccumulation, pathology, and removal. Rejuvenation Res., 2010, 13(5), 589-598.
[http://dx.doi.org/10.1089/rej.2009.0995] [PMID: 21142669]
[39]
Samanta, S; Kumar, S Rajeev , Effect of phosphorus and zinc on fodder yield and quality of leguminous fodder: Berseem (Trifolium alexandrinum L.). Int J Environ Clim Change, 2023, 13(10), 1209-1221.
[http://dx.doi.org/10.9734/ijecc/2023/v13i102773]
[40]
Singh, V.; Verma, P.; Khaiper, M.; Kaur, K. Examining the impact of integrated nutrient management and vermicompost on mustard growth and nutrient composition. Int. J. Plant Soil Sci., 2023, 35(21), 1241-1249.
[http://dx.doi.org/10.9734/ijpss/2023/v35i214102]
[41]
Wessling-Resnick, M. Excess iron: Considerations related to development and early growth. Am. J. Clin. Nutr., 2017, 106(S6), 1600S-1605S.
[http://dx.doi.org/10.3945/ajcn.117.155879] [PMID: 29070548]
[42]
Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol., 2018, 97(9), 1527-1534.
[http://dx.doi.org/10.1007/s00277-018-3407-5] [PMID: 29959467]
[43]
Oteef, M.D.Y.; Fawy, K.F.; Abd-Rabboh, H.S.M.; Idris, A.M. Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer Region, Saudi Arabia. Environ. Monit. Assess., 2015, 187(11), 676.
[http://dx.doi.org/10.1007/s10661-015-4905-8] [PMID: 26446130]
[44]
Rahmdel, S.; Rezaei, M.; Ekhlasi, J. Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: Their potential health risk to the general population in Shiraz, Iran. Environ. Monit. Assess., 2018, 190(11), 650.
[http://dx.doi.org/10.1007/s10661-018-7042-3] [PMID: 30338393]
[45]
Hardisson, A.; Revert, C.; Gonzales-Weler, D.; Rubio, C. Aluminium exposure through the diet. Food Sci. Nutr., 2017, 3, 19.
[46]
Kassaw, G.; Badessa, T.S.; Ezez, D. Mineral contents and health risk assessment of sesame (Sesamum Indicum Linn) seeds grown in Ethiopia. J. Food Compos. Anal., 2023, 123, 105562.
[http://dx.doi.org/10.1016/j.jfca.2023.105562]
[47]
Raza, M.A.; Feng, L.Y.; Manaf, A. Sulphur application increases seed yield and oil content in sesame seeds under rainfed conditions. Field Crops Res., 2018, 218, 51-58.
[http://dx.doi.org/10.1016/j.fcr.2017.12.024]
[48]
Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Sci. Total Environ., 2019, 651(Pt 2), 2927-2942.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.047] [PMID: 30463144]
[49]
Petek, M.; Toth, N.; Pecina, M. Beetroot mineral composition affected by mineral and organic fertilization. PLoS One, 2019, 14(9), e0221767.
[http://dx.doi.org/10.1371/journal.pone.0221767] [PMID: 31490954]
[50]
Behera, S.K.; Shukla, A.K.; Singh, M.V.; Wanjari, R.H.; Singh, P. Yield and zinc, copper, manganese and iron concentration in maize (Zea mays L.) grown on vertisol as influenced by zinc application from various zinc fertilizers. J. Plant Nutr., 2015, 38(10), 1544-1557.
[http://dx.doi.org/10.1080/01904167.2014.992537]
[51]
Cakmak, I.; McLaughlin, M.J.; White, P. Zinc for better crop production and human health. Plant Soil, 2017, 411(1-2), 1-4.
[http://dx.doi.org/10.1007/s11104-016-3166-9]
[52]
Ishfaq, M.; Wakeel, A.; Shahzad, M.N.; Kiran, A.; Li, X. Severity of zinc and iron malnutrition linked to low intake through a staple crop: A case study in east-central Pakistan. Environ. Geochem. Health, 2021, 43(10), 4219-4233.
[http://dx.doi.org/10.1007/s10653-021-00912-3] [PMID: 33830390]
[53]
Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol., 2006, 20(1), 3-18.
[http://dx.doi.org/10.1016/j.jtemb.2006.01.006] [PMID: 16632171]
[54]
Thakur, S.; Sinha, A.; Ghosh, B.A. Boron-a critical element for fruit nutrition. Commun. Soil Sci. Plant Anal., 2023, 54(21), 2899-2914.
[55]
Caruso, G.; De Pascale, S.; Cozzolino, E. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy , 2019, 9(9), 505.
[http://dx.doi.org/10.3390/agronomy9090505]
[56]
Consentino, B.B.; Ciriello, M.; Sabatino, L. Current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: A review. Horticulturae, 2023, 9(2), 219.
[http://dx.doi.org/10.3390/horticulturae9020219]
[57]
Cristache, S.E.; Vuță, M.; Marin, E.; Cioacă, S.I.; Vuţă, M. Organic versus conventional farming-A paradigm for the sustainable development of the European countries. Sustainability, 2018, 10(11), 4279.
[http://dx.doi.org/10.3390/su10114279]
[58]
dos Santos, A.M.P.; Lima, J.S.; Anunciação, D.S.; Souza, A.S.; dos Santos, D.C.M.B.; Matos, G.D. Determination and evaluation employing multivariate analysis of the mineral composition of broccoli (Brassica oleracea L. var. Italica). Food Anal. Methods, 2013, 6(3), 745-752.
[http://dx.doi.org/10.1007/s12161-012-9475-6]
[59]
Kelly, S.D.; Bateman, A.S. Comparison of mineral concentrations in commercially grown organic and conventional crops – Tomatoes (Lycopersicon esculentum) and lettuces (Lactuca sativa). Food Chem., 2010, 119(2), 738-745.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.022]
[60]
Khoddami, A.; Messina, V.; Vadabalija, V.K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality and potential in innovative products. Crit. Rev. Food Sci. Nutr., 2023, 63(9), 1170-1186.
[http://dx.doi.org/10.1080/10408398.2021.1960793] [PMID: 34357823]
[61]
Krejčová, A.; Návesník, J.; Jičínská, J.; Černohorský, T. An elemental analysis of conventionally, organically and self-grown carrots. Food Chem., 2016, 192, 242-249.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.008] [PMID: 26304343]
[62]
Malhi, S.S.; Gan, Y.; Raney, J.P. Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agron. J., 2007, 99(2), 570-577.
[http://dx.doi.org/10.2134/agronj2006.0269]
[63]
Manca, K.N A P. The content of minerals in Slovenian organic and conventional produced fruits, herbs and vegetables. Acta Agric. Slov., 2015, 103(2), 271-279.
[64]
Byerlee, D.; Fanzo, J. The SDG of zero hunger 75 years on: Turning full circle on agriculture and nutrition. Glob. Food Secur., 2019, 21, 52-59.
[http://dx.doi.org/10.1016/j.gfs.2019.06.002]
[65]
Rempelos, L.; Barański, M.; Sufar, E.K. Effect of climatic conditions, and agronomic practices used in organic and conventional crop production on yield and nutritional composition parameters in potato, cabbage, lettuce and onion; results from the long-term NFSC-trials. Agronomy , 2023, 13(5), 1225.
[http://dx.doi.org/10.3390/agronomy13051225]
[66]
Siderer, Y.; Maquet, A.; Anklam, E. Need for research to support consumer confidence in the growing organic food market. Trends Food Sci. Technol., 2005, 16(8), 332-343.
[http://dx.doi.org/10.1016/j.tifs.2005.02.001]
[67]
Wu, D.T.; Li, W.X.; Wan, J.J.; Hu, Y.C.; Gan, R.Y.; Zou, L. A comprehensive review of pea (Pisum sativum L.): chemical composition, processing, health benefits, and food applications. Foods, 2023, 12(13), 2527.
[http://dx.doi.org/10.3390/foods12132527] [PMID: 37444265]
[68]
Zarzyńska, K.; Trawczyński, C.; Pietraszko, M. Environmental and agronomical factors limiting differences in potato yielding between organic and conventional production system. Agriculture, 2023, 13(4), 901.
[http://dx.doi.org/10.3390/agriculture13040901]
[69]
de Lima, M.D.; Barbosa, R. Methods of authentication of food grown in organic and conventional systems using chemometrics and data mining algorithms: a review. Food Anal. Methods, 2019, 12(4), 887-901.
[http://dx.doi.org/10.1007/s12161-018-01413-3]
[70]
de Souza Araújo, D.F.; da Silva, A.M.R.B.; de Andrade Lima, L.L.; da Silva Vasconcelos, M.A.; Andrade, S.A.C.; Asfora Sarubbo, L. The concentration of minerals and physicochemical contaminants in conventional and organic vegetables. Food Control, 2014, 44, 242-248.
[http://dx.doi.org/10.1016/j.foodcont.2014.04.005]
[71]
FAO/WHO. Organically Produced Foods 2020. Available from: www.fao.org/3/a1385e/a1385e00.pdf
[72]
Gopalan, C.; Rama Sastri, B.V.; Balasubramanian, S.C. Nutritive value of Indian foods/C Gopalan, B V Rama Sastri, S C Balasubramanian. Hyderabad: National Institute of Nutrition; Indian Council of Medical Research: New Delhi, 1971.
[73]
Ha, T.M.; Shakur, S.; Pham Do, K.H. Rural-urban differences in willingness to pay for organic vegetables: Evidence from Vietnam. Appetite, 2019, 141, 104273.
[http://dx.doi.org/10.1016/j.appet.2019.05.004] [PMID: 31150771]
[74]
Hajšlová, J.; Schulzová, V.; Slanina, P.; Janné, K.; Hellenäs, K.E.; Andersson, C.H. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam., 2005, 22(6), 514-534.
[http://dx.doi.org/10.1080/02652030500137827] [PMID: 16019825]
[75]
Hoefkens, C.; Verbeke, W.; Aertsens, J.; Mondelaers, K.; Van Camp, J. The nutritional and toxicological value of organic vegetables. Br. Food J., 2009, 111(10), 1062-1077.
[http://dx.doi.org/10.1108/00070700920992916]
[76]
Singh, I.; Dighe, P.; Rasane, P. Nutrient composition and health benefits of millets. In: Nutriomics of Millet Crops; CRC Press, 2023, pp. 1-16.
[http://dx.doi.org/10.1201/b22809-1]
[77]
Weaver, C.M. Potassium and Health. Adv. Nutr., 2013, 4(3), 368S-377S.
[http://dx.doi.org/10.3945/an.112.003533] [PMID: 23674806]