Oxadiazole Derivatives of Diclofenac as an Anti-proliferative Agent for B-cell Non-Hodgkin Lymphoma: An In vitro and In Silico Studies

Page: [443 - 451] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies.

Aim: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through in vitro and in silico approaches.

Methods: Anti-lymphoma potential was evaluated by alamar blue technique. MTT assay employed for cytotoxicity. Gene and protein expression studies was performed by qRT-PCR and ELISA respectively. Docking studies was performed by using MOE program.

Results: Among five diclofenac derivatives, (II) showed promising anti-lymphoma effects, where it inhibited the expression of BCL-2, p-38 MAPK and TGF-β in both follicular and Burkitt’s lymphoma cells and was non-toxic against normal human fibroblast cells. The in silico studies against BCL-2 revealed that the unsubstituted Sulphur group in (II) is involved in the crucial interactions with the binding site residue.

Conclusion: The compound (II) can be a potential therapeutic candidate for B-cell non-Hodgkin lymphoma and deserves further development as a novel anti-lymphoma agent.

Graphical Abstract

[1]
Mugnaini, E.N.; Ghosh, N. Lymphoma. Prim. Care, 2016, 43(4), 661-675.
[http://dx.doi.org/10.1016/j.pop.2016.07.012] [PMID: 27866584]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Ambinder, A.J.; Shenoy, P.J.; Malik, N.; Maggioncalda, A.; Nastoupil, L.J.; Flowers, C.R. Exploring risk factors for follicular lymphoma. Adv. Hematol., 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/626035] [PMID: 23028387]
[4]
Schmitz, R.; Ceribelli, M.; Pittaluga, S.; Wright, G.; Staudt, L.M. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb. Perspect. Med., 2014, 4(2), a014282.
[http://dx.doi.org/10.1101/cshperspect.a014282] [PMID: 24492847]
[5]
Nguyen, L.; Papenhausen, P.; Shao, H. The role of c-MYC in B-cell lymphomas: Diagnostic and molecular aspects. Genes, 2017, 8(4), 116.
[http://dx.doi.org/10.3390/genes8040116] [PMID: 28379189]
[6]
Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126.
[http://dx.doi.org/10.4103/aam.aam_56_18] [PMID: 31417011]
[7]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[8]
Pantziarka, P.; Sukhatme, V.; Bouche, G.; Melhuis, L.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)—diclofenac as an anti-cancer agent. Ecancermedicalscience, 2016, 10, 610.
[http://dx.doi.org/10.3332/ecancer.2016.610] [PMID: 26823679]
[9]
Shah, S. Arshia; Kazmi, N.S.; Jabeen, A.; Faheem, A.; Dastagir, N.; Ahmed, T.; Khan, K.M.; Ahmed, S.; Raza, A.; Perveen, S. Diclofenac 1, 3, 4-oxadiazole derivatives; biology-oriented drug synthesis (BIODS) in search of better non-steroidal, non-acid antiinflammatory agents. Med. Chem., 2018, 14(7), 674-687.
[http://dx.doi.org/10.2174/1573406414666180321141555] [PMID: 29564980]
[10]
Brinkhuizen, T.; Frencken, K.J.A.; Nelemans, P.J.; Hoff, M.L.S.; Kelleners-Smeets, N.W.J.; zur Hausen, A.; van der Horst, M.P.J.; Rennspiess, D.; Winnepenninckx, V.J.L.; van Steensel, M.A.M.; Mosterd, K. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial. J. Am. Acad. Dermatol., 2016, 75(1), 126-134.
[http://dx.doi.org/10.1016/j.jaad.2016.01.050] [PMID: 27067393]
[11]
Hassan, H.M.; Varney, M.L.; Chaturvedi, N.K.; Joshi, S.S.; Weisenburger, D.D.; Singh, R.K.; Dave, B.J. Modulation of p73 isoforms expression induces anti-proliferative and pro-apoptotic activity in mantle cell lymphoma independent of p53 status. Leuk. Lymphoma, 2016, 57(12), 2874-2889.
[http://dx.doi.org/10.3109/10428194.2016.1165814] [PMID: 27074052]
[12]
Braun, F.K.; Al-Yacoub, N.; Plötz, M.; Möbs, M.; Sterry, W.; Eberle, J. Nonsteroidal anti-inflammatory drugs induce apoptosis in cutaneous T-cell lymphoma cells and enhance their sensitivity for TNF-related apoptosis-inducing ligand. J. Invest. Dermatol., 2012, 132(2), 429-439.
[http://dx.doi.org/10.1038/jid.2011.316] [PMID: 22011910]
[13]
Choi, S.; Kim, S.; Park, J.; Lee, S.E.; Kim, C.; Kang, D. Diclofenac: A nonsteroidal anti-inflammatory drug inducing cancer cell death by inhibiting microtubule polymerization and autophagy flux. Antioxidants, 2022, 11(5), 1009.
[http://dx.doi.org/10.3390/antiox11051009] [PMID: 35624874]
[14]
Sana, T.; Qayyum, S.; Jabeen, A.; Siddiqui, B.S.; Begum, S.; Siddiqui, R.A.; Hadda, T.B. Isolation and characterization of anti-inflammatory and anti-proliferative compound, for B-cell Non-Hodgkin lymphoma, from Nyctanthes arbor-tristis Linn. J. Ethnopharmacol., 2022, 293, 115267.
[http://dx.doi.org/10.1016/j.jep.2022.115267] [PMID: 35398498]
[15]
Bian, E.B.; Chen, E.F.; Xu, Y.D.; Yang, Z.H.; Tang, F.; Ma, C.C.; Wang, H.L.; Zhao, B. Exosomal lncRNA ATB activates astrocytes that promote glioma cell invasion. J. Oncol., 2019, 54(2), 713-721.
[PMID: 30483768]
[16]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[17]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 335-373.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[18]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[http://dx.doi.org/10.1038/nm.3048] [PMID: 23291630]
[19]
Labute, P. Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019.
[20]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5-6), 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[21]
Li, Q.; Withoff, S.; Verma, I.M. Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol., 2005, 26(6), 318-325.
[http://dx.doi.org/10.1016/j.it.2005.04.003] [PMID: 15922948]
[22]
Peterson, H.I. Effects of prostaglandin synthesis inhibitors on tumor growth and vascularization. Experimental studies in the rat. Invasion Metastasis, 1983, 3(3), 151-159.
[PMID: 6203870]
[23]
Perini, G.F.; Ribeiro, G.N.; Pinto Neto, J.V.; Campos, L.T.; Hamerschlak, N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol., 2018, 11(1), 65.
[http://dx.doi.org/10.1186/s13045-018-0608-2] [PMID: 29747654]
[24]
Kunkalla, K.; Liu, Y.; Qu, C.; Leventaki, V.; Agarwal, N.K.; Singh, R.R.; Vega, F. Functional inhibition of BCL2 is needed to increase the susceptibility to apoptosis to SMO inhibitors in diffuse large B-cell lymphoma of germinal center subtype. Ann. Hematol., 2013, 92(6), 777-787.
[http://dx.doi.org/10.1007/s00277-013-1684-6] [PMID: 23370596]
[25]
Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[26]
Chapnick, D.A.; Warner, L.; Bernet, J.; Rao, T.; Liu, X. Partners in crime: The TGFβ and MAPK pathways in cancer progression. Cell Biosci., 2011, 1(1), 42.
[http://dx.doi.org/10.1186/2045-3701-1-42] [PMID: 21711586]
[27]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[28]
Vogler, M.; Walter, H.S.; Dyer, M.J.S. Targeting anti‐apoptotic BCL 2 family proteins in haematological malignancies – from pathogenesis to treatment. Br. J. Haematol., 2017, 178(3), 364-379.
[http://dx.doi.org/10.1111/bjh.14684] [PMID: 28449207]
[29]
Elenitoba-Johnson, K.S.J.; Jenson, S.D.; Abbott, R.T.; Palais, R.A.; Bohling, S.D.; Lin, Z.; Tripp, S.; Shami, P.J.; Wang, L.Y.; Coupland, R.W.; Buckstein, R.; Perez-Ordonez, B.; Perkins, S.L.; Dube, I.D.; Lim, M.S. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc. Natl. Acad. Sci., 2003, 100(12), 7259-7264.
[http://dx.doi.org/10.1073/pnas.1137463100] [PMID: 12756297]
[30]
Han, L.; Zhang, Q.; Dail, M.; Shi, C.; Cavazos, A.; Ruvolo, V.R.; Zhao, Y.; Kim, E.; Rahmani, M.; Mak, D.H.; Jin, S.S.; Chen, J.; Phillips, D.C.; Koller, P.B.; Jacamo, R.; Burks, J.K.; DiNardo, C.; Daver, N.; Jabbour, E.; Wang, J.; Kantarjian, H.M.; Andreeff, M.; Grant, S.; Leverson, J.D.; Sampath, D.; Konopleva, M. Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105(3), 697-707.
[http://dx.doi.org/10.3324/haematol.2018.205534] [PMID: 31123034]