Letters in Functional Foods

Author(s): Manjeshwar Shrinath Baliga*, Vijaya Marakala, Raymond Anthony and Thomas George

DOI: 10.2174/0126669390257953231101111549

DownloadDownload PDF Flyer Cite As
Fruits of Emblica officinalis Linn. and its Phytochemicals in the Prevention of Ethanol-induced Hepatotoxicity: A Mini-Review

Article ID: e220124225928 Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Excessive alcohol consumption over time is one of the primary causes of liver disease and death globally. Because there is no effective treatment, the situation has become more complicated, and the emphasis has shifted to the use of alternative and complementary medicine to treat liver problems. Herbs with dietary use have played an important part in the treatment of liver diseases since antiquity. Amla or Indian gooseberry, scientifically known as Phyllanthus emblica or Emblica officinalis, is a fruiting plant of the Phyllanthaceae family that is used in a variety of traditional and folk medical systems. The fruits have both dietary and medicinal value and are used to prevent chemical-induced hepatocarcinogenesis and reduce experimentally induced hyperlipidemia and metabolic syndrome in laboratory animals. They also have hepatoprotective effects against a variety of hepatotoxins such as heavy metals, iron overload, ochratoxins, hexachlorocyclohexane, carbon tetrachloride, therapeutic drugs such as paracetamol, and antitubercular. Amla fruits and phytochemicals such as quercetin, gallic acid, ellagic acid, and kaempferol are known to reduce ethanol-induced liver damage, and mechanistic studies have shown that the beneficial effects of these phytochemicals are mediated in part by free radical scavenging, antioxidant, and anti-inflammatory effects. This review examines the positive effects of amla fruit and its phytochemicals for the first time, as well as the mechanisms underlying the protective effects.

Keywords: Indian gooseberry, alcohol, hepatotoxicity, Phyllanthus emblica, Emblica officinalis, hyperlipidemia.

[1]
Ghany MG, Hoofnagle JH. Approach to the Patient with Liver Disease.Harrison’s Principles of Internal Medicine, 20e. New York, NY: McGraw-Hill Education 2018.
[2]
Shivashankara AR, Azmidah A, Haniadka R, Rai MP, Arora R, Baliga MS. Dietary agents in the prevention of alcohol-induced hepatotoxicty: Preclinical observations. Food Funct 2012; 3(2): 101-9.
[http://dx.doi.org/10.1039/C1FO10170F] [PMID: 22119904]
[3]
Saberi B, Dadabhai AS, Jang YY, Gurakar A, Mezey E. Current Management of Alcoholic Hepatitis and Future Therapies. J Clin Transl Hepatol 2016; 4(2): 113-22.
[PMID: 27350941]
[4]
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 2020; 72(3): 558-77.
[http://dx.doi.org/10.1016/j.jhep.2019.10.003] [PMID: 31622696]
[5]
Szabo G, Petrasek J. Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol Alcohol 2017; 52(4): 414-24.
[http://dx.doi.org/10.1093/alcalc/agx025] [PMID: 28482064]
[6]
Subramaniyan V, Chakravarthi S, Jegasothy R, et al. Alcohol-associated liver disease: A review on its pathophysiology, diagnosis and drug therapy. Toxicol Rep 2021; 8: 376-85.
[http://dx.doi.org/10.1016/j.toxrep.2021.02.010] [PMID: 33680863]
[7]
Guo FF, Xiao M, Wang SY, Zeng T, Cheng L, Xie Q. Downregulation of mitogen-activated protein kinases (MAPKs) in chronic ethanol-induced fatty liver. Toxicol Mech Methods 2020; 30(6): 407-16.
[http://dx.doi.org/10.1080/15376516.2020.1747126] [PMID: 32237978]
[8]
Wen B, Zhang C, Zhou J, et al. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2021; 222: 107752.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107752] [PMID: 33253739]
[9]
You M, Jogasuria A, Lee K, et al. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2017; 10(3): 226-36.
[http://dx.doi.org/10.2174/1874467208666150817112109] [PMID: 26278388]
[10]
Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS. Hepatoprotective properties of the Indian gooseberry (Emblica officinalis Gaertn): A review. Food Funct 2013; 4(10): 1431-41.
[http://dx.doi.org/10.1039/c3fo60237k] [PMID: 23978895]
[11]
Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 2011; 20(3): 225-39.
[http://dx.doi.org/10.1097/CEJ.0b013e32834473f4] [PMID: 21317655]
[12]
Gulati RK, Agarwal S, Agrawal SS. Hepatoprotective studies on Phyllanthus emblica Linn. and quercetin. Indian J Exp Biol 1995; 33(4): 261-8.
[PMID: 7558182]
[13]
Reddy VD, Padmavathi P, Varadacharyulu NC. Emblica officinalis protects against alcohol-induced liver mitochondrial dysfunction in rats. J Med Food 2009; 12(2): 327-33.
[http://dx.doi.org/10.1089/jmf.2007.0694] [PMID: 19459733]
[14]
Pramyothin P, Samosorn P, Poungshompoo S, Chaichantipyuth C. The protective effects of Phyllanthus emblica Linn. extract on ethanol induced rat hepatic injury. J Ethnopharmacol 2006; 107(3): 361-4.
[http://dx.doi.org/10.1016/j.jep.2006.03.035] [PMID: 16750340]
[15]
Yao P, Nussler A, Liu L, et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007; 47(2): 253-61.
[http://dx.doi.org/10.1016/j.jhep.2007.02.008] [PMID: 17433488]
[16]
Liu S, Hou W, Yao P, et al. Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 2010; 24(2): 516-22.
[http://dx.doi.org/10.1016/j.tiv.2009.03.006] [PMID: 19327393]
[17]
Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag 2010; 6(22): 135-41.
[http://dx.doi.org/10.4103/0973-1296.62900] [PMID: 20668581]
[18]
Molina MF, Sanchez-Reus I, Iglesias I, Benedi J. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol Pharm Bull 2003; 26(10): 1398-402.
[http://dx.doi.org/10.1248/bpb.26.1398] [PMID: 14519943]
[19]
Tang Y, Gao C, Xing M, et al. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 2012; 50(5): 1194-200.
[http://dx.doi.org/10.1016/j.fct.2012.02.008] [PMID: 22365892]
[20]
Tang Y, Li Y, Yu H, et al. Quercetin attenuates chronic ethanol hepatotoxicity: Implication of “free” iron uptake and release. Food Chem Toxicol 2014; 67: 131-8.
[http://dx.doi.org/10.1016/j.fct.2014.02.022] [PMID: 24569067]
[21]
Li Y, Chen M, Xu Y, et al. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin. Oxid Med Cell Longev 2016; 2016: 1-15.
[http://dx.doi.org/10.1155/2016/4147610] [PMID: 27057276]
[22]
Zhu M, Zhou X, Zhao J. Quercetin prevents alcohol induced liver injury through targeting of PI3K/Akt/nuclear factor κB and STAT3 signaling pathway. Exp Ther Med 2017; 14(6): 6169-75.
[http://dx.doi.org/10.3892/etm.2017.5329] [PMID: 29285175]
[23]
Kartkaya K, Oğlakçı A, Şentürk H, Bayramoğlu G, Canbek M, Kanbak G. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication. Cell Biochem Funct 2013; 31(3): 208-13.
[http://dx.doi.org/10.1002/cbf.2874] [PMID: 22945768]
[24]
Zhou Y, Jin H, Wu Y, Chen L, Bao X, Lu C. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism. Toxicol In Vitro 2019; 57: 226-32.
[http://dx.doi.org/10.1016/j.tiv.2019.03.008] [PMID: 30853489]
[25]
Devipriya N, Sudheer AR, Vishwanathan P, Menon VP. Modulatory potential of ellagic acid, a natural plant polyphenol on altered lipid profile and lipid peroxidation status during alcohol-induced toxicity: A pathohistological study. J Biochem Mol Toxicol 2008; 22(2): 101-12.
[http://dx.doi.org/10.1002/jbt.20226] [PMID: 18418896]
[26]
Devipriya N, Sudheer AR, Menon VP. Dose-response effect of ellagic acid on circulatory antioxidants and lipids during alcohol-induced toxicity in experimental rats. Fundam Clin Pharmacol 2007; 21(6): 621-30.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00551.x] [PMID: 18034663]
[27]
Devipriya N, Sudheer AR, Srinivasan M, Menon VP. Effect of Ellagic Acid, a Plant Polyphenol, on Fibrotic Markers (MMPs and TIMPs) during Alcohol-Induced Hepatotoxicity. Toxicol Mech Methods 2007; 17(6): 349-56.
[http://dx.doi.org/10.1080/15376510601077003] [PMID: 20020958]
[28]
Girish C, Pradhan SC. Drug development for liver diseases: Focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 2008; 22(6): 623-32.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00618.x] [PMID: 19049667]
[29]
Sohn EH, Koo HJ, Hang DTT, et al. Protective effects of ellagic acid on ethanol-induced toxicity in hepatic HepG2 cells. Mol Cell Toxicol 2013; 9(3): 249-56.
[http://dx.doi.org/10.1007/s13273-013-0032-1]
[30]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[31]
Shakya G, Manjini S, Hoda M, Rajagopalan R. Hepatoprotective role of kaempferol during alcohol- and ΔPUFA-induced oxidative stress. J Basic Clin Physiol Pharmacol 2014; 25(1): 73-9.
[http://dx.doi.org/10.1515/jbcpp-2013-0051] [PMID: 23893680]
[32]
Zhou B, Jiang Z, Li X, Zhang X. Kaempferol’s Protective Effect on Ethanol-Induced Mouse Primary Hepatocytes Injury Involved in the Synchronous Inhibition of SP1, Hsp70 and CYP2E1. Am J Chin Med 2018; 46(5): 1093-110.
[http://dx.doi.org/10.1142/S0192415X1850057X] [PMID: 29976085]
[33]
Chen J, Xuan Y, Luo M, et al. Kaempferol alleviates acute alcoholic liver injury in mice by regulating intestinal tight junction proteins and butyrate receptors and transporters. Toxicology 2020; 429: 152338.
[http://dx.doi.org/10.1016/j.tox.2019.152338] [PMID: 31785310]
[34]
Sairam K, Rao ChV, Babu MD, Kumar KV, Agrawal VK, K Goel RK. Antiulcerogenic effect of methanolic extract of Emblica officinalis: An experimental study. J Ethnopharmacol 2002; 82(1): 1-9.
[http://dx.doi.org/10.1016/S0378-8741(02)00041-7] [PMID: 12169398]
[35]
Al-Rehaily AJ, Al-Howiriny TS, Al-Sohaibani MO, Rafatullah S. Gastroprotective effects of ‘Amla’ Emblica officinalis on in vivo test models in rats. Phytomedicine 2002; 9(6): 515-22.
[http://dx.doi.org/10.1078/09447110260573146] [PMID: 12403160]
[36]
Aruna R, Geetha A, Suguna P, Suganya V. Rutin rich Emblica officinalis Geart. fruit extract ameliorates inflammation in the pancreas of rats subjected to alcohol and cerulein administration. J Complement Integr Med 2014; 11(1): 9-18.
[http://dx.doi.org/10.1515/jcim-2013-0023] [PMID: 24516008]
[37]
Anto EJ, Syahputra RA, Silitonga HA, Situmorang PC, Nugaraha SE. Oral acute toxicity study extract ethanol of balakka fruit (Phyllanthus emblica). Pharmacia 2022; 69(1): 187-94.
[http://dx.doi.org/10.3897/pharmacia.69.e81280]
[38]
Antony B, Benny M, Kaimal TNB. A Pilot clinical study to evaluate the effect of Emblica officinalis extract (Amlamax™) on markers of systemic inflammation and dyslipidemia. Indian J Clin Biochem 2008; 23(4): 378-81.
[http://dx.doi.org/10.1007/s12291-008-0083-6] [PMID: 23105791]
[39]
Chen TS, Liou SY, Chang YL. Supplementation of Emblica officinalis (Amla) extract reduces oxidative stress in uremic patients. Am J Chin Med 2009; 37(1): 19-25.
[http://dx.doi.org/10.1142/S0192415X09006680] [PMID: 19222108]
[40]
Karkon Varnosfaderani S, Hashem-Dabaghian F, Amin G, et al. Efficacy and safety of Amla (Phyllanthus emblica L.) in non-erosive reflux disease: A double-blind, randomized, placebo-controlled clinical trial. J Integr Med 2018; 16(2): 126-31.
[http://dx.doi.org/10.1016/j.joim.2018.02.008] [PMID: 29526236]
[41]
Khanna S, Das A, Spieldenner J, Rink C, Roy S. Supplementation of a standardized extract from Phyllanthus emblica improves cardiovascular risk factors and platelet aggregation in overweight/class-1 obese adults. J Med Food 2015; 18(4): 415-20.
[http://dx.doi.org/10.1089/jmf.2014.0178] [PMID: 25756303]
[42]
Pingali U, Fatima N, Pilli R. Evaluation of Phyllanthus emblica extract on cold pressor induced cardiovascular changes in healthy human subjects. Pharmacognosy Res 2014; 6(1): 29-35.
[http://dx.doi.org/10.4103/0974-8490.122914] [PMID: 24497739]
[43]
Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 2011; 62(6): 609-16.
[http://dx.doi.org/10.3109/09637486.2011.560565] [PMID: 21495900]
[44]
Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun 2020; 17: 100499.
[http://dx.doi.org/10.1016/j.conctc.2019.100499] [PMID: 31890983]
[45]
Usharani P, Merugu PL, Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement Med Ther 2019; 19: 97.
[http://dx.doi.org/10.1186/s12906-019-2509-5]
[46]
Upadya H, Prabhu S, Prasad A, Subramanian D, Gupta S, Goel A. A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia. BMC Complement Altern Med 2019; 19(1): 27.
[http://dx.doi.org/10.1186/s12906-019-2430-y] [PMID: 30670010]