Insights to Design New Drugs against Human African Trypanosomiasis Targeting Rhodesain using Covalent Docking, Molecular Dynamics Simulations, and MM-PBSA Calculations
  • * (Excluding Mailing and Handling)

Abstract

Background: Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, African Human Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite.

Methodology: Here, based on the previous studies by Nascimento et al. (2021) that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity.

Results: Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (ΔGbind between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes.

Conclusion: Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD. This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.

[1]
Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796.
[http://dx.doi.org/10.1021/acs.chemrev.8b00338] [PMID: 30507157]
[2]
Feasey, N.; Wansbrough-Jones, M.; Mabey, D.C.W.; Solomon, A.W. Neglected tropical diseases. Br. Med. Bull., 2010, 93(1), 179-200.
[http://dx.doi.org/10.1093/bmb/ldp046] [PMID: 20007668]
[3]
World Health Organization. Neglected Trop Dis, 2020. Available from: https://www.who.int/neglected_diseases/diseases/en/ (accessed June 22, 2020).
[4]
Souto, D.E.P.; Volpe, J.; Gonçalves, C.C.; Ramos, C.H.I.; Kubota, L.T. A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta, 2019, 205, 120122.
[http://dx.doi.org/10.1016/j.talanta.2019.120122] [PMID: 31450437]
[5]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against american and african trypanosomiases. Curr. Top. Med. Chem., 2021, 21(21), 1871-1899.
[http://dx.doi.org/10.2174/18734294MTE10MTEoz] [PMID: 33797369]
[6]
Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty, 2018, 7(1), 67.
[http://dx.doi.org/10.1186/s40249-018-0444-1] [PMID: 29950174]
[7]
Vermelho, A.B.; Rodrigues, G.C.; Supuran, C.T. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin. Drug Discov., 2020, 15(2), 145-158.
[http://dx.doi.org/10.1080/17460441.2020.1681394] [PMID: 31670987]
[8]
Akinsolu, F.T.; Nemieboka, P.O.; Njuguna, D.W.; Ahadji, M.N.; Dezso, D.; Varga, O. Emerging resistance of neglected tropical diseases: A scoping review of the literature. Int. J. Environ. Res. Public Health, 2019, 16(11), 1925.
[http://dx.doi.org/10.3390/ijerph16111925] [PMID: 31151318]
[9]
Fazal, O.; Hotez, P.J. NTDs in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study. PLoS Negl. Trop. Dis., 2020, 14(11), e0008791.
[http://dx.doi.org/10.1371/journal.pntd.0008791] [PMID: 33180793]
[10]
Suroowan, S.; Mahomoodally, F.; Ragoo, L. Management and treatment of dengue and chikungunya - natural products to the rescue. Comb. Chem. High Throughput Screen., 2016, 19(7), 554-564.
[http://dx.doi.org/10.2174/1386207319666160506123401] [PMID: 27151484]
[11]
Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on dengue and zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698.
[http://dx.doi.org/10.1016/j.ejmech.2021.113698] [PMID: 34274831]
[12]
Goupil, L.S.; McKerrow, J.H. Introduction: drug discovery and development for neglected diseases. Chem. Rev., 2014, 114(22), 11131-11137.
[http://dx.doi.org/10.1021/cr500546h] [PMID: 26721412]
[13]
Ferreira, L.L.G.; de Moraes, J.; Andricopulo, A.D. Approaches to advance drug discovery for neglected tropical diseases. Drug Discov. Today, 2022, 27(8), 2278-2287.
[http://dx.doi.org/10.1016/j.drudis.2022.04.004] [PMID: 35398562]
[14]
Pollastri, M.P. Fexinidazole: A new drug for african sleeping sickness on the horizon. Trends Parasitol., 2018, 34(3), 178-179.
[http://dx.doi.org/10.1016/j.pt.2017.12.002] [PMID: 29275007]
[15]
Malvy, D.; Chappuis, F. Sleeping sickness. Clin. Microbiol. Infect., 2011, 17(7), 986-995.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03536.x] [PMID: 21722252]
[16]
Human African trypanosomiasis (sleeping sickness) n.d. Available from: https://www.who.int/health-topics/human-african-trypanosomiasis#tab=tab_1 (accessed October 27, 2020).
[17]
Kennedy, P.G.E. Update on human African trypanosomiasis (sleeping sickness). J. Neurol., 2019, 266(9), 2334-2337.
[http://dx.doi.org/10.1007/s00415-019-09425-7] [PMID: 31209574]
[18]
Welburn, S.C.; Molyneux, D.H.; Maudlin, I. Beyond tsetse – implications for research and control of human african trypanosomiasis epidemics. Trends Parasitol., 2016, 32(3), 230-241.
[http://dx.doi.org/10.1016/j.pt.2015.11.008] [PMID: 26826783]
[19]
Kennedy, P.G.E.; Rodgers, J. Clinical and neuropathogenetic aspects of human african trypanosomiasis. Front. Immunol., 2019, 10, 39.
[http://dx.doi.org/10.3389/fimmu.2019.00039] [PMID: 30740102]
[20]
Mudji, J.; Blum, A.; Grize, L.; Wampfler, R.; Ruf, M.T.; Cnops, L.; Nickel, B.; Burri, C.; Blum, J. Gambiense human african trypanosomiasis sequelae after treatment: A follow-up study 12 years after treatment. Trop. Med. Infect. Dis., 2020, 5(1), 10.
[http://dx.doi.org/10.3390/tropicalmed5010010] [PMID: 31940846]
[21]
Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human african trypanosomiasis. Lancet, 2017, 390(10110), 2397-2409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[22]
Fairlamb, A.H.; Horn, D. Melarsoprol resistance in african trypanosomiasis. Trends Parasitol., 2018, 34(6), 481-492.
[http://dx.doi.org/10.1016/j.pt.2018.04.002] [PMID: 29705579]
[23]
P De Koning, H. The drugs of sleeping sickness: Their mechanisms of action and resistance, and a brief history. Trop. Med. Infect. Dis., 2020, 5(1), 14.
[http://dx.doi.org/10.3390/tropicalmed5010014] [PMID: 31963784]
[24]
Singh Grewal, A.; Pandita, D.; Bhardwaj, S.; Lather, V. Recent updates on development of drug molecules for human african trypanosomiasis. Curr. Top. Med. Chem., 2016, 16(20), 2245-2265.
[http://dx.doi.org/10.2174/1568026616666160413125335] [PMID: 27072715]
[25]
Masand, V.H.; El-Sayed, N.N.E.; Mahajan, D.T.; Mercader, A.G.; Alafeefy, A.M.; Shibi, I.G. QSAR modeling for anti-human African trypanosomiasis activity of substituted 2-Phenylimidazopyridines. J. Mol. Struct., 2017, 1130, 711-718.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.012]
[26]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[27]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; Fernando da Silva Santos-Júnior, P.; Xavier de Araújo-Júnior, J.; Ferreira da Silva-Júnior, E. Molecular Modeling Applied to Design of Cysteine Protease Inhibitors – A Powerful Tool for the Identification of Hit Compounds Against Neglected Tropical Diseases. Front. Comput. Chem, 2020; pp. 63-110.
[http://dx.doi.org/10.2174/9789811457791120050004]
[28]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[29]
McShan, D.; Kathman, S.; Lowe, B.; Xu, Z.; Zhan, J.; Statsyuk, A.; Ogungbe, I.V. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain. Bioorg. Med. Chem. Lett., 2015, 25(20), 4509-4512.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.074] [PMID: 26342866]
[30]
Ettari, R.; Tamborini, L.; Angelo, I.C.; Micale, N.; Pinto, A.; De Micheli, C.; Conti, P. Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis. J. Med. Chem., 2013, 56(14), 5637-5658.
[http://dx.doi.org/10.1021/jm301424d] [PMID: 23611656]
[31]
Ettari, R.; Pinto, A.; Previti, S.; Tamborini, L.; Angelo, I.C.; La Pietra, V.; Marinelli, L.; Novellino, E.; Schirmeister, T.; Zappalà, M.; Grasso, S.; De Micheli, C.; Conti, P. Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation. Bioorg. Med. Chem., 2015, 23(21), 7053-7060.
[http://dx.doi.org/10.1016/j.bmc.2015.09.029] [PMID: 26432608]
[32]
Maiorana, S.; Ettari, R.; Previti, S.; Amendola, G.; Wagner, A.; Cosconati, S.; Hellmich, U.A.; Schirmeister, T.; Zappalà, M. Peptidyl vinyl ketone irreversible inhibitors of rhodesain: Modifications of the P2 fragment. ChemMedChem, 2020, 15(16), 1552-1561.
[http://dx.doi.org/10.1002/cmdc.202000360] [PMID: 32567172]
[33]
Arafet, K.; González, F.V.; Moliner, V. Quantum mechanics/molecular mechanics studies of the mechanism of cysteine proteases inhibition by dipeptidyl nitroalkenes. Chemistry, 2020, 26(9), 2002-2012.
[http://dx.doi.org/10.1002/chem.201904513] [PMID: 31692123]
[34]
Schirmeister, T.; Schmitz, J.; Jung, S.; Schmenger, T.; Krauth-Siegel, R.L.; Gütschow, M. Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei. Bioorg. Med. Chem. Lett., 2017, 27(1), 45-50.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.036] [PMID: 27890381]
[35]
Johé, P.; Jaenicke, E.; Neuweiler, H.; Schirmeister, T.; Kersten, C.; Hellmich, U.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. J. Biol. Chem., 2021, 296, 100565.
[http://dx.doi.org/10.1016/j.jbc.2021.100565] [PMID: 33745969]
[36]
Previti, S.; Ettari, R.; Calcaterra, E.; Di Chio, C.; Ravichandran, R.; Zimmer, C.; Hammerschmidt, S.; Wagner, A.; Bogacz, M.; Cosconati, S.; Schirmeister, T.; Zappalà, M. Development of urea-bond-containing michael acceptors as antitrypanosomal agents targeting rhodesain. ACS Med. Chem. Lett., 2022, 13(7), 1083-1090.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00084] [PMID: 35859868]
[37]
Kathman, S.G.; Statsyuk, A.V. Covalent tethering of fragments for covalent probe discovery. MedChemComm, 2016, 7(4), 576-585.
[http://dx.doi.org/10.1039/C5MD00518C] [PMID: 27398190]
[38]
Nascimento, I.J.S.; de Aquino, T.M.; da Silva-Júnior, E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov., 2022, 19(11), 951-955.
[http://dx.doi.org/10.2174/1570180819666220405225817]
[39]
dos Santos Nascimento, I.J.; da Silva Santos-Júnior, P.F.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.F. Strategies in medicinal chemistry to discover new hit compounds against ebola virus: Challenges and perspectives in drug discovery. Mini Rev. Med. Chem., 2022, 22(22), 2896-2924.
[http://dx.doi.org/10.2174/1389557522666220404085858] [PMID: 35379146]
[40]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva Júnior, E.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1). Curr. Med. Chem., 2022, 29(33), 5397-5419.
[http://dx.doi.org/10.2174/0929867329666220317122948] [PMID: 35301943]
[41]
da Silva-Júnior, E.F.; dos Santos Nascimento, I.J. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen., 2022, 25(14), 2317-2340.
[http://dx.doi.org/10.2174/1386207324666210715165943] [PMID: 34269666]
[42]
Nascimento, I.J dos S.; de Aquino, TM.; Silva-Júnior, EF da. Structure based drug discovery approaches applied to SARS-CoV-2 (COVID-19). In: Pharm. Target. Coronaviruses; BENTHAM SCIENCE PUBLISHERS, 2022; pp. 1-61.
[http://dx.doi.org/10.2174/9789815051308122010003]
[43]
BERNSTEIN, F.C.; KOETZLE, TF.; WILLIAMS, GJB.; MEYER, EF.; BRICE, M.D.; RODGERS, JR. The protein data bank. A computer-based archival file for macromolecular structures.Eur J Biochem, 1977, 80, 319-324.
[44]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein–ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[45]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25(1), 13-19.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[46]
Giroud, M.; Dietzel, U.; Anselm, L.; Banner, D.; Kuglstatter, A.; Benz, J.; Blanc, J.B.; Gaufreteau, D.; Liu, H.; Lin, X.; Stich, A.; Kuhn, B.; Schuler, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Kisker, C.; Diederich, F.; Haap, W. Repurposing a library of human cathepsin L ligands: Identification of macrocyclic lactams as potent rhodesain and trypanosoma brucei inhibitors. J. Med. Chem., 2018, 61(8), 3350-3369.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01869] [PMID: 29590750]
[47]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[48]
Csizmadia, P. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. Proc. 3rd Int. Electron. Conf. Synth. Org. Chem., Basel, Switzerland: MDPI 1999, p. 1775.
[http://dx.doi.org/10.3390/ecsoc-3-01775]
[49]
Oda, A.; Okayasu, M.; Kamiyama, Y.; Yoshida, T.; Takahashi, O.; Matsuzaki, H. Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein–ligand docking using arguslab software. Bull. Chem. Soc. Jpn., 2007, 80(10), 1920-1925.
[http://dx.doi.org/10.1246/bcsj.80.1920]
[50]
Wang, Q.; He, J.; Wu, D.; Wang, J.; Yan, J.; Li, H. Interaction of α-cyperone with human serum albumin: Determination of the binding site by using discovery studio and via spectroscopic methods. J. Lumin., 2015, 164, 81-85.
[http://dx.doi.org/10.1016/j.jlumin.2015.03.025]
[51]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[52]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors. Rec. Adv. Inflamm. Aller. Drug. Disc., 2022, 15(2), 80-86.
[http://dx.doi.org/10.2174/2772270816666220126103909]
[53]
Santos Nascimento, I.J.; Aquino, T.M.; Silva-Júnior, E.F. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro : A study by applying virtual screening, molecular dynamics, mm-pbsa calculations and covalent docking. Lett. Drug Des. Discov., 2022, 19(7), 637-653.
[http://dx.doi.org/10.2174/1570180819666220106110133]
[54]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; da Silva Júnior, E.F.; Olimpio de Moura, R. Insights on microsomal prostaglandin E2 synthase 1 (mPGES-1) Inhibitors using molecular dynamics and mm/pbsa calculations. Lett. Drug Des. Discov., 2023, 20.
[http://dx.doi.org/10.2174/1570180820666230228105833]
[55]
Albino, S.L.; da Silva Moura, W.C.; Reis, M.M.L.; Sousa, G.L.S.; da Silva, P.R.; de Oliveira, M.G.C.; Borges, T.K.S.; Albuquerque, L.F.F.; de Almeida, S.M.V.; de Lima, M.C.A.; Kuckelhaus, S.A.S.; Nascimento, I.J.S.; Junior, F.J.B.M.; da Silva, T.G.; de Moura, R.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by dna interaction and immunomodulation. Pharmaceuticals, 2023, 16(2), 204.
[http://dx.doi.org/10.3390/ph16020204] [PMID: 37259353]
[56]
Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22(21), 2695-2696.
[http://dx.doi.org/10.1093/bioinformatics/btl461] [PMID: 16940322]
[57]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[58]
Sarma, H.; Mattaparthi, V.S.K. Structure-based virtual screening of high-affinity atp-competitive inhibitors against human lemur tyrosine kinase-3 (LMTK3) domain: A novel therapeutic target for breast cancer. Interdiscip. Sci., 2019, 11(3), 527-541.
[http://dx.doi.org/10.1007/s12539-018-0302-7] [PMID: 30066129]
[59]
Wang, F.; Wu, F.X.; Li, C.Z.; Jia, C.Y.; Su, S.W.; Hao, G.F.; Yang, G.F. ACID: A free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform., 2019, 11(1), 73.
[http://dx.doi.org/10.1186/s13321-019-0394-z] [PMID: 33430982]
[60]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[61]
Kerr, I.D.; Wu, P.; Marion-Tsukamaki, R.; Mackey, Z.B.; Brinen, L.S. Crystal structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl. Trop. Dis., 2010, 4(6), e701.
[http://dx.doi.org/10.1371/journal.pntd.0000701] [PMID: 20544024]
[62]
Marques, D.N.; Siqueira, A.S.; Gonçalves, E.C.; Barros, N.L.F.; de Souza, C.R.B. Homology modeling and molecular dynamics simulations of a cassava translationally controlled tumor protein (MeTCTP). Plant Gene, 2019, 19, 100185.
[http://dx.doi.org/10.1016/j.plgene.2019.100185]
[63]
Wu, T.; Qin, Q.; Lv, R.; Liu, N.; Yin, W.; Hao, C.; Sun, Y.; Zhang, C.; Sun, Y.; Zhao, D.; Cheng, M. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo. Eur. J. Med. Chem., 2022, 238, 114451.
[http://dx.doi.org/10.1016/j.ejmech.2022.114451] [PMID: 35617855]
[64]
Evren, A.E.; Nuha, D.; Dawbaa, S.; Sağlık, B.N.; Yurttaş, L. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors. Eur. J. Med. Chem., 2022, 229, 114097.
[http://dx.doi.org/10.1016/j.ejmech.2021.114097] [PMID: 34998057]
[65]
Emami, L.; Khabnadideh, S.; Faghih, Z.; Solhjoo, A.; Malek, S.; Mohammadian, A.; Divar, M.; Faghih, Z. Novel N ‐SUBSTITUTED ISATIN‐AMPYRONE Schiff bases as a new class of antiproliferative agents: Design, synthesis, molecular modeling and in vitro cytotoxic activity. J. Heterocycl. Chem., 2022, 59(7), 1144-1159.
[http://dx.doi.org/10.1002/jhet.4454]
[66]
Nunes, J.A.; Silva, F.N.; Silva, E.B.; Costa, C.A.C.B.; Freitas, J.D.; Mendonça-Junior, F.J.B.; Giardini, M.A.; Siqueira-Neto, J.L.; McKerrow, J.H.; Rodrigues Teixeira, T.; Odeesho, L.W.; Caffrey, C.R.; Cardoso, S.H.; Silva-Júnior, E.F. Coumarin-based derivatives targeting Trypanosoma cruzi cruzain and Trypanosoma brucei cathepsin L-like proteases. New J. Chem., 2023, 47(21), 10127-10146.
[http://dx.doi.org/10.1039/D2NJ04946E]
[67]
Bhattacharya, U.; Panda, S.K.; Gupta, P.S.S.; Rana, M.K. Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J. Mol. Struct., 2022, 1253, 132258.
[http://dx.doi.org/10.1016/j.molstruc.2021.132258]
[68]
Boyenle, I.D.; Adelusi, T.I.; Ogunlana, A.T.; Oluwabusola, R.A.; Ibrahim, N.O.; Tolulope, A.; Okikiola, O.S.; Adetunji, B.L.; Abioye, I.O.; Kehinde Oyedele, A-Q. Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Inform. Med. Unlocked, 2022, 28, 100833.
[http://dx.doi.org/10.1016/j.imu.2021.100833]
[69]
Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur. J. Med. Chem., 2021, 221, 113545.
[http://dx.doi.org/10.1016/j.ejmech.2021.113545] [PMID: 34091216]
[70]
Di Chio, C.; Previti, S.; Amendola, G.; Ravichandran, R.; Wagner, A.; Cosconati, S.; Hellmich, U.A.; Schirmeister, T.; Zappalà, M.; Ettari, R. Development of novel dipeptide nitriles as inhibitors of rhodesain of Trypanosoma brucei rhodesiense. Eur. J. Med. Chem., 2022, 236, 114328.
[http://dx.doi.org/10.1016/j.ejmech.2022.114328] [PMID: 35385806]
[71]
Ma, Y.; Zhang, S.; Zhou, L.; Zhang, L.; Zhang, P.; Ma, S. Exploration of the inhibitory mechanism of PC190723 on FtsZ protein by molecular dynamics simulation. J. Mol. Graph. Model., 2022, 114, 108189.
[http://dx.doi.org/10.1016/j.jmgm.2022.108189] [PMID: 35453046]
[72]
Kumari, P.; Poddar, R. A comparative multivariate analysis of nitrilase enzymes: An ensemble based computational approach. Comput. Biol. Chem., 2019, 83, 107095.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107095] [PMID: 31442709]
[73]
dos Santos Nascimento, I.J.; De Souza, M.; Medeiros, D.C.; de Moura, R.O. Dynamic cross-correlation matrix (dccm) reveals new insights to discover new nlrp3 inhibitors useful as anti-inflammatory drugs. In: ECMC 2022; MDPI: Basel, Switzerland, 2022; p. 84.
[http://dx.doi.org/10.3390/ECMC2022-13306]
[74]
Avti, P.; Chauhan, A.; Shekhar, N.; Prajapat, M.; Sarma, P.; Kaur, H.; Bhattacharyya, A.; Kumar, S.; Prakash, A.; Sharma, S.; Medhi, B. Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings. J. Biomol. Struct. Dyn., 2022, 40(19), 8894-8904.
[http://dx.doi.org/10.1080/07391102.2021.1922310] [PMID: 33998950]
[75]
Chaudhari, A.; Chaudhari, M.; Mahera, S.; Saiyed, Z.; Nathani, N.M.; Shukla, S.; Patel, D.; Patel, C.; Joshi, M.; Joshi, C.G. In-Silico analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with host replication factors MADP1 and hnRNP-1. Informatics in Medicine Unlocked, 2021, 25, 100670.
[http://dx.doi.org/10.1016/j.imu.2021.100670] [PMID: 34307830]
[76]
Ettari, R.; Previti, S.; Tamborini, L.; Cullia, G.; Grasso, S.; Zappalà, M. The inhibition of cysteine proteases rhodesain and tbcatb: A valuable approach to treat human african trypanosomiasis. Mini Rev. Med. Chem., 2016, 16(17), 1374-1391.
[http://dx.doi.org/10.2174/1389557515666160509125243] [PMID: 27156518]
[77]
Ehmke, V.; Winkler, E.; Banner, D.W.; Haap, W.; Schweizer, W.B.; Rottmann, M.; Kaiser, M.; Freymond, C.; Schirmeister, T.; Diederich, F. Optimization of triazine nitriles as rhodesain inhibitors: Structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L. ChemMedChem, 2013, 8(6), 967-975.
[http://dx.doi.org/10.1002/cmdc.201300112] [PMID: 23658062]
[78]
Klein, P.; Johe, P.; Wagner, A.; Jung, S.; Kühlborn, J.; Barthels, F.; Tenzer, S.; Distler, U.; Waigel, W.; Engels, B.; Hellmich, U.A.; Opatz, T.; Schirmeister, T. New cysteine protease inhibitors: electrophilic (het)arenes and unexpected prodrug identification for the trypanosoma protease rhodesain. Molecules, 2020, 25(6), 1451.
[http://dx.doi.org/10.3390/molecules25061451] [PMID: 32210166]
[79]
Royo, S.; Rodríguez, S.; Schirmeister, T.; Kesselring, J.; Kaiser, M.; González, F.V. Dipeptidyl enoates as potent rhodesain inhibitors that display a dual mode of action. ChemMedChem, 2015, 10(9), 1484-1487.
[http://dx.doi.org/10.1002/cmdc.201500204] [PMID: 26179752]
[80]
Mott, B.T.; Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Ang, K.K.H.; Leister, W.; Shen, M.; Silveira, J.T.; Doyle, P.S.; Arkin, M.R.; McKerrow, J.H.; Inglese, J.; Austin, C.P.; Thomas, C.J.; Shoichet, B.K.; Maloney, D.J. Identification and optimization of inhibitors of Trypanosomal cysteine proteases: Cruzain, rhodesain, and TbCatB. J. Med. Chem., 2010, 53(1), 52-60.
[http://dx.doi.org/10.1021/jm901069a] [PMID: 19908842]
[81]
da Silva-Junior, E.F.; Barcellos Franca, P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[82]
Costa, L.; Aquino, T.; Nascimento, I. Virtual screening based on covalent docking and MM-PBSA calculations predict the drugs neratinib, sacubitril, alprostadil, trandolapril, and florbetapir as promising cruzain inhibitors useful against Chagas disease. In: Proc. MOL2NET’21, Conf. Mol. Biomed. Comput. Sci. Eng, 7th ed; MDPI: Basel, Switzerland, 2021; p. 11647.
[http://dx.doi.org/10.3390/mol2net-07-11647]
[83]
Eurtivong, C.; Zimmer, C.; Schirmeister, T.; Butkinaree, C.; Saruengkhanphasit, R.; Niwetmarin, W.; Ruchirawat, S.; Bhambra, A.S. A structure-based virtual high-throughput screening, molecular docking, molecular dynamics and MM/PBSA study identified novel putative drug-like dual inhibitors of trypanosomal cruzain and rhodesain cysteine proteases. Mol. Divers., 2023.
[http://dx.doi.org/10.1007/s11030-023-10600-2] [PMID: 36617352]
[84]
Santos, L.H.; Waldner, B.J.; Fuchs, J.E.; Pereira, G.A.N.; Liedl, K.R.; Caffarena, E.R.; Ferreira, R.S. Understanding structure–activity relationships for trypanosomal cysteine protease inhibitors by simulations and free energy calculations. J. Chem. Inf. Model., 2019, 59(1), 137-148.
[http://dx.doi.org/10.1021/acs.jcim.8b00557] [PMID: 30532974]