Effect of Intermittent Fasting on Lipid Profile, Anthropometric and Hepatic Markers in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review

Page: [187 - 202] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: The first-line treatment for non-alcoholic fatty liver disease (NAFLD) is lifestyle modification; this should accompany any pharmacological intervention. Intermittent fasting (IF) has shown benefits over metabolic and cardiovascular parameters. Non-religious IF includes Time-Restricted Feeding (TRF), Alternate-Day Fasting (ADF), and 5:2 IF interventions.

Objective: To evaluate the effects of IF on anthropometric, liver damage, and lipid profile markers in subjects with NAFLD.

Methods: A bibliographic search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using PubMed and Scopus databases.

Results: Five studies involving 470 patients with NAFLD were included. In relation to anthropometric markers, all the articles reported body weight reduction (2.48-7.63%), but only ADF and 5:2 IF reported a body weight reduction >5%; also, all the articles reported fat mass reduction. Concerning hepatic markers, all the articles reported a reduction in hepatic steatosis and alanine aminotransferase activity, but no changes in fat-free mass and high-density lipoprotein cholesterol levels. There were variable results on fibrosis, other liver enzymes, waist circumference and body mass index, as well as the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol.

Conclusion: Any form of IF could be potentially beneficial for NAFLD treatment and some associated cardiometabolic parameters. However, it is necessary to evaluate the effects and safety of IF in long-term studies involving a higher number of participants with different stages of NAFLD. The effect of IF on NAFLD-associated vascular risk also needs evaluation.

Graphical Abstract

[1]
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77(5): 1797-835.
[http://dx.doi.org/10.1097/HEP.0000000000000323] [PMID: 36727674]
[2]
Pavlides M, Cobbold J. Non-alcoholic fatty liver disease. Medicine 2019; 47(11): 728-33.
[http://dx.doi.org/10.1016/j.mpmed.2019.08.007]
[3]
Ekstedt M, Nasr P, Kechagias S. Natural history of NAFLD/NASH. Curr Hepatol Rep 2017; 16(4): 391-7.
[http://dx.doi.org/10.1007/s11901-017-0378-2] [PMID: 29984130]
[4]
Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol 2024; 29(1): 101133.
[http://dx.doi.org/10.1016/j.aohep.2023.101133] [PMID: 37364816]
[5]
Lazarus JV, Mark HE, Anstee QM, et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat Rev Gastroenterol Hepatol 2022; 19(1): 60-78.
[http://dx.doi.org/10.1038/s41575-021-00523-4] [PMID: 34707258]
[6]
Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol 2019; 70(3): 531-44.
[http://dx.doi.org/10.1016/j.jhep.2018.10.033] [PMID: 30414863]
[7]
Keskin M, Hayıroğlu Mİ, Uzun AO, Güvenç TS, Şahin S, Kozan Ö. Effect of nonalcoholic fatty liver disease on in-hospital and long-term outcomes in patients with st-segment elevation myocardial infarction. Am J Cardiol 2017; 120(10): 1720-6.
[http://dx.doi.org/10.1016/j.amjcard.2017.07.107] [PMID: 28867124]
[8]
Ajmera V, Loomba R. Advances in the genetics of nonalcoholic fatty liver disease. Curr Opin Gastroenterol 2023; 39(3): 150-5.
[http://dx.doi.org/10.1097/MOG.0000000000000927] [PMID: 37144531]
[9]
Petäjä E, Yki-Järvinen H. Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD-a systematic review. Int J Mol Sci 2016; 17(5): 633.
[http://dx.doi.org/10.3390/ijms17050633] [PMID: 27128911]
[10]
Huang DQ, Wilson LA, Behling C, et al. Fibrosis progression rate in biopsy-proven nonalcoholic fatty liver disease among people with diabetes versus people without diabetes: A multicenter study. Gastroenterology 2023; 165(2): 463-472.e5.
[http://dx.doi.org/10.1053/j.gastro.2023.04.025] [PMID: 37127100]
[11]
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023; 77(4): 1335-47.
[http://dx.doi.org/10.1097/HEP.0000000000000004] [PMID: 36626630]
[12]
Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol 2020; 5: 16.
[http://dx.doi.org/10.21037/tgh.2019.09.08] [PMID: 32258520]
[13]
Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022; 7(9): 851-61.
[http://dx.doi.org/10.1016/S2468-1253(22)00165-0] [PMID: 35798021]
[14]
Chen XY, Wang C, Huang YZ, Zhang LL. Nonalcoholic fatty liver disease shows significant sex dimorphism. World J Clin Cases 2022; 10(5): 1457-72.
[http://dx.doi.org/10.12998/wjcc.v10.i5.1457] [PMID: 35211584]
[15]
El-Agroudy NN, Kurzbach A, Rodionov RN, et al. Are lifestyle therapies effective for NAFLD treatment? Trends Endocrinol Metab 2019; 30(10): 701-9.
[http://dx.doi.org/10.1016/j.tem.2019.07.013] [PMID: 31422872]
[16]
Arab JP, Dirchwolf M, Álvares-da-Silva MR, et al. Latin American Association for the study of the liver (ALEH) practice guidance for the diagnosis and treatment of non-alcoholic fatty liver disease. Ann Hepatol 2020; 19(6): 674-90.
[http://dx.doi.org/10.1016/j.aohep.2020.09.006] [PMID: 33031970]
[17]
Athyros VG, Alexandrides TK, Bilianou H, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71: 17-32.
[http://dx.doi.org/10.1016/j.metabol.2017.02.014] [PMID: 28521870]
[18]
Muzurović E, Peng CCH, Belanger MJ, Sanoudou D, Mikhailidis DP, Mantzoros CS. Nonalcoholic fatty liver disease and cardiovascular disease: A review of shared cardiometabolic risk factors. Hypertension 2022; 79(7): 1319-26.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.17982] [PMID: 35465684]
[19]
Puri P, Fuchs M. Population management of nonalcoholic fatty liver disease. Fed Pract 2019; 36(2): 72-82.
[20]
Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 2017; 67(4): 829-46.
[http://dx.doi.org/10.1016/j.jhep.2017.05.016] [PMID: 28545937]
[21]
Pouwels S, Sakran N, Graham Y, et al. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord 2022; 22(1): 63.
[http://dx.doi.org/10.1186/s12902-022-00980-1] [PMID: 35287643]
[22]
Pettinelli P, Fernández T, Aguirre C, Barrera F, Riquelme A, Fernández-Verdejo R. Prevalence of non-alcoholic fatty liver disease and its association with lifestyle habits in adults in Chile: A cross-sectional study from the National Health Survey 2016-2017. Br J Nutr 2023; 130(6): 1036-46.
[http://dx.doi.org/10.1017/S0007114523000028] [PMID: 36620945]
[23]
Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 2013; 59(1): 138-43.
[http://dx.doi.org/10.1016/j.jhep.2013.02.012] [PMID: 23485520]
[24]
Razavi Zade M, Telkabadi MH, Bahmani F, Salehi B, Farshbaf S, Asemi Z. The effects of DASH diet on weight loss and metabolic status in adults with non‐alcoholic fatty liver disease: A randomized clinical trial. Liver Int 2016; 36(4): 563-71.
[http://dx.doi.org/10.1111/liv.12990] [PMID: 26503843]
[25]
Ristic-Medic D, Kovacic M, Takic M, et al. Calorie-restricted mediterranean and low-fat diets affect fatty acid status in individuals with nonalcoholic fatty liver disease. Nutrients 2020; 13(1): 15.
[http://dx.doi.org/10.3390/nu13010015] [PMID: 33374554]
[26]
Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015; 149(2): 367-78.
[http://dx.doi.org/10.1053/j.gastro.2015.04.005]
[27]
Jeffery RW, Epstein LH, Wilson GT, et al. Long-term maintenance of weight loss: Current status. Health Psychol 2000; 19(1) (Suppl.): 5-16.
[http://dx.doi.org/10.1037/0278-6133.19.Suppl1.5] [PMID: 10709944]
[28]
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[29]
Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: A clinical perspective from the national lipid association. J Clin Lipidol 2023; 17(4): 428-51.
[http://dx.doi.org/10.1016/j.jacl.2023.05.099] [PMID: 37271600]
[30]
Lloyd-Jones DM, Allen NB, Anderson CAM, et al. Life’s essential 8: Updating and enhancing the American heart association’s construct of cardiovascular health: A presidential advisory from the American heart association. Circulation 2022; 146(5): e18-43.
[http://dx.doi.org/10.1161/CIR.0000000000001078] [PMID: 35766027]
[31]
Kris-Etherton PM, Sapp PA, Riley TM, Davis KM, Hart T, Lawler O. The dynamic interplay of healthy lifestyle behaviors for cardiovascular health. Curr Atheroscler Rep 2022; 24(12): 969-80.
[http://dx.doi.org/10.1007/s11883-022-01068-w] [PMID: 36422788]
[32]
Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: A pragmatic randomised clinical trial. Atherosclerosis 2021; 319: 21-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.12.020] [PMID: 33465658]
[33]
Hayıroğlu Mİ, Çınar T, Çinier G, et al. The effect of 1-year mean step count on the change in the atherosclerotic cardiovascular disease risk calculation in patients with high cardiovascular risk: A sub-study of the LIGHT randomized clinical trial. Kardiol Pol 2021; 79(10): 1140-2.
[http://dx.doi.org/10.33963/KP.a2021.0108] [PMID: 34506630]
[34]
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39: 46-58.
[http://dx.doi.org/10.1016/j.arr.2016.10.005] [PMID: 27810402]
[35]
de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med 2019; 381(26): 2541-51.
[http://dx.doi.org/10.1056/NEJMra1905136] [PMID: 31881139]
[36]
Hoddy KK, Marlatt KL, Çetinkaya H, et al. Intermittent fasting and metabolic health: From religious fast to time-restricted feeding. Obesity 2020; 28(S1): S29-37.
[http://dx.doi.org/10.1002/oby.22829]
[37]
Mirmiran P, Bahadoran Z, Gaeini Z, Moslehi N, Azizi F. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29(9): 906-15.
[http://dx.doi.org/10.1016/j.numecd.2019.05.056] [PMID: 31377182]
[38]
Gu L, Fu R, Hong J, Ni H, Yu K, Lou H. Effects of intermittent fasting in human compared to a non-intervention diet and caloric restriction: A meta-analysis of randomized controlled trials. Front Nutr 2022; 9: 871682.
[http://dx.doi.org/10.3389/fnut.2022.871682] [PMID: 35586738]
[39]
Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 2016; 23(6): 1048-59.
[http://dx.doi.org/10.1016/j.cmet.2016.06.001] [PMID: 27304506]
[40]
Tinsley GM, Forsse JS, Butler NK, et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci 2017; 17(2): 200-7.
[http://dx.doi.org/10.1080/17461391.2016.1223173] [PMID: 27550719]
[41]
Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero‐calorie alternate‐day fasting to daily caloric restriction in adults with obesity. Obesity 2016; 24(9): 1874-83.
[http://dx.doi.org/10.1002/oby.21581] [PMID: 27569118]
[42]
Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: A review of human and animal trials. Am J Clin Nutr 2007; 86(1): 7-13.
[http://dx.doi.org/10.1093/ajcn/86.1.7] [PMID: 17616757]
[43]
Varady K. Intermittent fasting is gaining interest fast. Nat Rev Mol Cell Biol 2021; 22(9): 587.
[http://dx.doi.org/10.1038/s41580-021-00377-3] [PMID: 33931758]
[44]
Yang F, Liu C, Liu X, et al. Effect of epidemic intermittent fasting on cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled trials. Front Nutr 2021; 8: 669325.
[http://dx.doi.org/10.3389/fnut.2021.669325] [PMID: 34733872]
[45]
Scholtens EL, Krebs JD, Corley BT, Hall RM. Intermittent fasting 5:2 diet: What is the macronutrient and micronutrient intake and composition? Clin Nutr 2020; 39(11): 3354-60.
[http://dx.doi.org/10.1016/j.clnu.2020.02.022] [PMID: 32199696]
[46]
Villanueva JE, Livelo C, Trujillo AS, et al. Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat Commun 2019; 10(1): 2700.
[http://dx.doi.org/10.1038/s41467-019-10563-9] [PMID: 31221967]
[47]
Duncan MJ, Smith JT, Narbaiza J, et al. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav 2016; 167: 1-9.
[http://dx.doi.org/10.1016/j.physbeh.2016.08.027] [PMID: 27586251]
[48]
Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848-60.
[http://dx.doi.org/10.1016/j.cmet.2012.04.019] [PMID: 22608008]
[49]
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr 2019; 39(1): 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[50]
Aliasghari F, Izadi A, Gargari BP, Ebrahimi S. The effects of Ramadan fasting on body composition, blood pressure, glucose metabolism, and markers of inflammation in NAFLD patients: An observational trial. J Am Coll Nutr 2017; 36(8): 640-5.
[http://dx.doi.org/10.1080/07315724.2017.1339644] [PMID: 28922096]
[51]
Roky R, Houti I, Moussamih S, Qotbi S, Aadil N. Physiological and chronobiological changes during ramadan intermittent fasting. Ann Nutr Metab 2004; 48(4): 296-303.
[http://dx.doi.org/10.1159/000081076] [PMID: 15452402]
[52]
Lavallee CM, Bruno A, Ma C, Raman M. The role of intermittent fasting in the management of nonalcoholic fatty liver disease: A narrative review. Nutrients 2022; 14(21): 4655.
[http://dx.doi.org/10.3390/nu14214655] [PMID: 36364915]
[53]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[54]
Eddowes PJ, Sasso M, Allison M, et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2019; 156(6): 1717-30.
[http://dx.doi.org/10.1053/j.gastro.2019.01.042] [PMID: 30689971]
[55]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[56]
Cai H, Qin YL, Shi ZY, et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: A randomised controlled trial. BMC Gastroenterol 2019; 19(1): 219.
[http://dx.doi.org/10.1186/s12876-019-1132-8] [PMID: 31852444]
[57]
Kord Varkaneh H, Salehi sahlabadi A, Găman MA, et al. Effects of the 5:2 intermittent fasting diet on non-alcoholic fatty liver disease: A randomized controlled trial. Front Nutr 2022; 9: 948655.
[http://dx.doi.org/10.3389/fnut.2022.948655] [PMID: 35958257]
[58]
Kord-Varkaneh H, Salehi-Sahlabadi A, Tinsley GM, Santos HO, Hekmatdoost A. Effects of time-restricted feeding (16/8) combined with a low-sugar diet on the management of non-alcoholic fatty liver disease: A randomized controlled trial. Nutrition 2023; 105: 111847.
[http://dx.doi.org/10.1016/j.nut.2022.111847] [PMID: 36257081]
[59]
Holmer M, Lindqvist C, Petersson S, et al. Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet - a randomised controlled trial. JHEP Reports 2021; 3(3): 100256.
[http://dx.doi.org/10.1016/j.jhepr.2021.100256] [PMID: 33898960]
[60]
Johari MI, Yusoff K, Haron J, et al. A randomised controlled trial on the effectiveness and adherence of modified alternate-day calorie restriction in improving activity of non-alcoholic fatty liver disease. Sci Rep 2019; 9(1): 11232.
[http://dx.doi.org/10.1038/s41598-019-47763-8] [PMID: 31375753]
[61]
Sanyal D, Mukherjee P, Raychaudhuri M, Ghosh S, Mukherjee S, Chowdhury S. Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes. Indian J Endocrinol Metab 2015; 19(5): 597-601.
[http://dx.doi.org/10.4103/2230-8210.163172] [PMID: 26425466]
[62]
Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S. Abnormal liver enzymes: A review for clinicians. World J Hepatol 2021; 13(11): 1688-98.
[http://dx.doi.org/10.4254/wjh.v13.i11.1688] [PMID: 34904038]
[63]
Higgins JPT, Green S, Eds. Cochrane Handbook for Systematic Reviews of Interventions Version 510. The Cochrane Collaboration 2011; pp. 197-218.
[64]
Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Clinical application of intermittent fasting for weight loss: Progress and future directions. Nat Rev Endocrinol 2022; 18(5): 309-21.
[http://dx.doi.org/10.1038/s41574-022-00638-x] [PMID: 35194176]
[65]
Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr 2017; 37(1): 371-93.
[http://dx.doi.org/10.1146/annurev-nutr-071816-064634] [PMID: 28715993]
[66]
Ezpeleta M, Gabel K, Cienfuegos S, et al. Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metab 2023; 35(1): 56-70.
[http://dx.doi.org/10.1016/j.cmet.2022.12.001]
[67]
Kotarsky CJ, Johnson NR, Mahoney SJ, et al. Time‐restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol Rep 2021; 9(10): e14868.
[http://dx.doi.org/10.14814/phy2.14868] [PMID: 34042299]
[68]
Gabel K, Hoddy KK, Haggerty N, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging 2018; 4(4): 345-53.
[http://dx.doi.org/10.3233/NHA-170036] [PMID: 29951594]
[69]
Anton SD, Lee SA, Donahoo WT, et al. The effects of time restricted feeding on overweight, older adults: A pilot study. Nutrients 2019; 11(7): 1500.
[http://dx.doi.org/10.3390/nu11071500] [PMID: 31262054]
[70]
Chow LS, Manoogian ENC, Alvear A, et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: A feasibility study. Obesity 2020; 28(5): 860-9.
[http://dx.doi.org/10.1002/oby.22756] [PMID: 32270927]
[71]
Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metab 2020; 32(3): 366-378.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.06.018] [PMID: 32673591]
[72]
Kesztyüs D, Cermak P, Gulich M, Kesztyüs T. Adherence to time-restricted feeding and impact on abdominal obesity in primary care patients: Results of a pilot study in a pre-post design. Nutrients 2019; 11(12): 2854.
[http://dx.doi.org/10.3390/nu11122854] [PMID: 31766465]
[73]
McAllister MJ, Pigg BL, Renteria LI, Waldman HS. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: A 4-week randomized pre-post pilot study. Nutr Res 2020; 75: 32-43.
[http://dx.doi.org/10.1016/j.nutres.2019.12.001] [PMID: 31955013]
[74]
Che T, Yan C, Tian D, Zhang X, Liu X, Wu Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: A randomised controlled trial. Nutr Metab 2021; 18(1): 88.
[http://dx.doi.org/10.1186/s12986-021-00613-9] [PMID: 34620199]
[75]
Manoogian ENC, Zadourian A, Lo HC, et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The healthy heroes randomized control trial. Cell Metab 2022; 34(10): 1442-56.
[76]
Wilkinson MJ, Manoogian ENC, Zadourian A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 2020; 31(1): 92-104.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.11.004] [PMID: 31813824]
[77]
He M, Wang J, Liang Q, et al. Time-restricted eating with or without low-carbohydrate diet reduces visceral fat and improves metabolic syndrome: A randomized trial. Cell Rep Med 2022; 3(10): 100777.
[http://dx.doi.org/10.1016/j.xcrm.2022.100777] [PMID: 36220069]
[78]
Liu D, Huang Y, Huang C, et al. Calorie restriction with or without time-restricted eating in weight loss. N Engl J Med 2022; 386(16): 1495-504.
[http://dx.doi.org/10.1056/NEJMoa2114833] [PMID: 35443107]
[79]
Smyers ME, Koch LG, Britton SL, Wagner JG, Novak CM. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats. Physiol Behav 2021; 230: 113280.
[http://dx.doi.org/10.1016/j.physbeh.2020.113280] [PMID: 33285179]
[80]
Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157(2): 679-91.
[http://dx.doi.org/10.1210/en.2015-1622] [PMID: 26653760]
[81]
Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 2019; 29(2): 303-19.
[http://dx.doi.org/10.1016/j.cmet.2018.08.004]
[82]
Byrne NM, Sainsbury A, King NA, Hills AP, Wood RE. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obes 2018; 42(2): 129-38.
[http://dx.doi.org/10.1038/ijo.2017.206] [PMID: 28925405]
[83]
Razavi R, Parvaresh A, Abbasi B, et al. The alternate-day fasting diet is a more effective approach than a calorie restriction diet on weight loss and hs-CRP levels. Int J Vitam Nutr Res 2021; 91(3-4): 242-50.
[http://dx.doi.org/10.1024/0300-9831/a000623] [PMID: 32003649]
[84]
Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity 2019; 27(8): 1244-54.
[http://dx.doi.org/10.1002/oby.22518] [PMID: 31339000]
[85]
Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-controlled transient elastography to assess fibrosis and steatosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2019; 17(1): 156-163.e2.
[http://dx.doi.org/10.1016/j.cgh.2018.04.043] [PMID: 29705261]
[86]
Hagström H, Nasr P, Ekstedt M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017; 67(6): 1265-73.
[http://dx.doi.org/10.1016/j.jhep.2017.07.027] [PMID: 28803953]
[87]
Machado MV, Cortez-Pinto H. Non-alcoholic fatty liver disease: What the clinician needs to know. World J Gastroenterol 2014; 20(36): 12956-80.
[http://dx.doi.org/10.3748/wjg.v20.i36.12956] [PMID: 25278691]
[88]
Hassan K, Bhalla V, El Regal ME. A-Kader HH. Nonalcoholic fatty liver disease: A comprehensive review of a growing epidemic. World J Gastroenterol 2014; 20(34): 12082-101.
[http://dx.doi.org/10.3748/wjg.v20.i34.12082] [PMID: 25232245]
[89]
Mendoza YP, Rodrigues SG, Delgado MG, et al. Inflammatory activity affects the accuracy of liver stiffness measurement by transient elastography but not by two‐dimensional shear wave elastography in non‐alcoholic fatty liver disease. Liver Int 2022; 42(1): 102-11.
[http://dx.doi.org/10.1111/liv.15116] [PMID: 34821035]
[90]
Yin C, Li Z, Xiang Y, et al. Effect of intermittent fasting on non-alcoholic fatty liver disease: Systematic review and meta-analysis. Front Nutr 2021; 8: 709683.
[http://dx.doi.org/10.3389/fnut.2021.709683] [PMID: 34322514]
[91]
Berger JM, Moon YA. Increased hepatic lipogenesis elevates liver cholesterol content. Mol Cells 2021; 44(2): 116-25.
[http://dx.doi.org/10.14348/molcells.2021.2147] [PMID: 33658436]
[92]
Harvie MN, Pegington M, Mattson MP, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int J Obes 2011; 35(5): 714-27.
[http://dx.doi.org/10.1038/ijo.2010.171] [PMID: 20921964]
[93]
Moro T, Tinsley G, Pacelli FQ, Marcolin G, Bianco A, Paoli A. Twelve months of time-restricted eating and resistance training improves inflammatory markers and cardiometabolic risk factors. Med Sci Sports Exerc 2021; 53(12): 2577-85.
[http://dx.doi.org/10.1249/MSS.0000000000002738] [PMID: 34649266]
[94]
Zeb F, Wu X, Chen L, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br J Nutr 2020; 123(11): 1216-26.
[http://dx.doi.org/10.1017/S0007114519003428] [PMID: 31902372]
[95]
Varady KA, Bhutani S, Klempel MC, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr J 2013; 12(1): 146.
[http://dx.doi.org/10.1186/1475-2891-12-146] [PMID: 24215592]
[96]
Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity 2013; 21(7): 1370-9.
[http://dx.doi.org/10.1002/oby.20353] [PMID: 23408502]
[97]
Hutchison AT, Regmi P, Manoogian ENC, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity 2019; 27(5): 724-32.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[98]
Meng H, Zhu L, Kord-Varkaneh HO, Santos H, Tinsley GM, Fu P. Effects of intermittent fasting and energy-restricted diets on lipid profile: A systematic review and meta-analysis. Nutrition 2020; 77: 110801.
[http://dx.doi.org/10.1016/j.nut.2020.110801] [PMID: 32428841]
[99]
Varady KA, Dam VT, Klempel MC, et al. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci Rep 2015; 5(1): 7561.
[http://dx.doi.org/10.1038/srep07561] [PMID: 25557754]
[100]
Klempel MC, Kroeger CM, Norkeviciute E, Goslawski M, Phillips SA, Varady KA. Benefit of a low-fat over high-fat diet on vascular health during alternate day fasting. Nutr Diabetes 2013; 3(5): e71.
[http://dx.doi.org/10.1038/nutd.2013.14] [PMID: 23712283]
[101]
Kelley GA, Kelley KS, Roberts S, Haskell W. Comparison of aerobic exercise, diet or both on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Clin Nutr 2012; 31(2): 156-67.
[http://dx.doi.org/10.1016/j.clnu.2011.11.011] [PMID: 22154987]
[102]
Zuo S, Wang G, Han Q, et al. The effects of tocotrienol supplementation on lipid profile: A meta-analysis of randomized controlled trials. Complement Ther Med 2020; 52: 102450.
[http://dx.doi.org/10.1016/j.ctim.2020.102450] [PMID: 32951713]
[103]
Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, et al. Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis 2020; 19(1): 96.
[http://dx.doi.org/10.1186/s12944-020-01283-x] [PMID: 32430018]
[104]
Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. J Am Coll Cardiol 2012; 60(25): 2631-9.
[http://dx.doi.org/10.1016/j.jacc.2012.09.017] [PMID: 23083789]
[105]
Santos HO, Macedo RCO. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin Nutr ESPEN 2018; 24: 14-21.
[http://dx.doi.org/10.1016/j.clnesp.2018.01.002] [PMID: 29576352]
[106]
Moro T, Tinsley G, Bianco A, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 2016; 14(1): 290.
[http://dx.doi.org/10.1186/s12967-016-1044-0] [PMID: 27737674]
[107]
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17(5): 276-95.
[http://dx.doi.org/10.1038/s41574-021-00471-8] [PMID: 33627836]
[108]
Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity 2018; 26(2): 254-68.
[http://dx.doi.org/10.1002/oby.22065] [PMID: 29086496]
[109]
Mooli RGR, Ramakrishnan SK. Emerging role of hepatic ketogenesis in fatty liver disease. Front Physiol 2022; 13: 946474.
[http://dx.doi.org/10.3389/fphys.2022.946474] [PMID: 35860662]
[110]
Post A, Garcia E, van den Berg EH, et al. Nonalcoholic fatty liver disease, circulating ketone bodies and all‐cause mortality in a general population‐based cohort. Eur J Clin Invest 2021; 51(12): e13627.
[http://dx.doi.org/10.1111/eci.13627] [PMID: 34120339]
[111]
Manolis AS, Manolis TA, Manolis AA. Ketone bodies and cardiovascular disease: An alternate fuel source to the rescue. Int J Mol Sci 2023; 24(4): 3534.
[http://dx.doi.org/10.3390/ijms24043534] [PMID: 36834946]
[112]
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2021; 77(13): 1660-9.
[http://dx.doi.org/10.1016/j.jacc.2020.12.065] [PMID: 33637354]
[113]
Abdul Kadir A, Clarke K, Evans RD. Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866(6): 165739.
[http://dx.doi.org/10.1016/j.bbadis.2020.165739] [PMID: 32084511]
[114]
Al Mahtab M, Ghosh J, Bhatia S, et al. Gender differences in nonalcoholic fatty liver disease. Euroasian J Hepatogastroenterol 2022; 12(S1): S19-25.
[http://dx.doi.org/10.5005/jp-journals-10018-1370] [PMID: 36466099]
[115]
Beaudry KM, Devries MC. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism. Appl Physiol Nutr Metab 2019; 44(8): 805-13.
[http://dx.doi.org/10.1139/apnm-2018-0635] [PMID: 30702924]
[116]
Du T, Sun X, Yuan G, et al. Sex differences in the impact of nonalcoholic fatty liver disease on cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2017; 27(1): 63-9.
[http://dx.doi.org/10.1016/j.numecd.2016.10.004] [PMID: 27956025]
[117]
Florentino G, Cotrim HP, Florentino A, et al. Hormone replacement therapy in menopausal women: Risk factor or protection to nonalcoholic fatty liver disease? Ann Hepatol 2012; 11(1): 147-9.
[http://dx.doi.org/10.1016/S1665-2681(19)31502-9] [PMID: 22166577]
[118]
Florentino GSA, Cotrim HP, Vilar CP, Florentino AVA, Guimarães GMA, Barreto VST. Nonalcoholic fatty liver disease in menopausal women. Arq Gastroenterol 2013; 50(3): 180-5.
[http://dx.doi.org/10.1590/S0004-28032013000200032] [PMID: 24322188]
[119]
Schwimmer JB, Ugalde-Nicalo P, Welsh JA, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: A randomized clinical trial. JAMA 2019; 321(3): 256-65.
[http://dx.doi.org/10.1001/jama.2018.20579] [PMID: 30667502]
[120]
Pugliese N, Plaz Torres MC, Petta S, Valenti L, Giannini EG, Aghemo A. Is there an ‘ideal’ diet for patients with NAFLD? Eur J Clin Invest 2022; 52(3): e13659.
[http://dx.doi.org/10.1111/eci.13659] [PMID: 34309833]