Combinatorial Chemistry & High Throughput Screening

Author(s): Sonia Singh*, Ashima Ahuja and Shilpi Pathak

DOI: 10.2174/0113862073280680240101065732

Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders

Page: [2043 - 2061] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.

Graphical Abstract

[1]
Chiurchiù, V.; Orlacchio, A.; Maccarrone, M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidat. Med. Cell. Long., 2016, 2016, 7909380.
[http://dx.doi.org/10.1155/2016/7909380]
[2]
Zheng, M.; Storz, G. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol., 2000, 59(1), 1-6.
[http://dx.doi.org/10.1016/S0006-2952(99)00289-0] [PMID: 10605928]
[3]
Aikens, J.; Dix, T.A. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem., 1991, 266(23), 15091-15098.
[http://dx.doi.org/10.1016/S0021-9258(18)98591-1] [PMID: 1869544]
[4]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[5]
Chiurchiù, V.; Maccarrone, M. Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2011, 15(9), 2605-2641.
[http://dx.doi.org/10.1089/ars.2010.3547] [PMID: 21391902]
[6]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[7]
Poulsen, H.E.; Prieme, H.; Loft, S. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev., 1998, 7(1), 9-16.
[PMID: 9511847]
[8]
Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[9]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[10]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[11]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxidat. Med. Cell. Longev., 2012, 2012, 428010.
[http://dx.doi.org/10.1155/2012/428010]
[12]
de Rijk, M.C.; Launer, L.J.; Berger, K.; Breteler, M.M.; Dartigues, J.F.; Baldereschi, M.; Fratiglioni, L.; Lobo, A.; Martinez-Lage, J.; Trenkwalder, C.; Hofman, A. Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurology, 2000, 54(11), S21-S23.
[PMID: 10854357]
[13]
Bekris, L.M.; Mata, I.F.; Zabetian, C.P. The genetics of Parkinson disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 228-242.
[http://dx.doi.org/10.1177/0891988710383572] [PMID: 20938043]
[14]
Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318.
[http://dx.doi.org/10.1038/nrg1831] [PMID: 16543934]
[15]
Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement., 2011, 7(2), 208-244.
[http://dx.doi.org/10.1016/j.jalz.2011.02.004] [PMID: 21414557]
[16]
Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. In: Atherosclerosis: Risks, Mechanisms, and Therapies; Wiley, 2015.
[http://dx.doi.org/10.1002/9781118828533.ch30]
[17]
Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262.
[http://dx.doi.org/10.1016/j.jns.2012.05.030] [PMID: 22669122]
[18]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: Stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(s2), S357-S367.
[http://dx.doi.org/10.3233/JAD-2010-100498] [PMID: 20421690]
[19]
Perneczky, R. Dementia prevention and reserve against neurodegenerative disease. Dialogues Clin. Neurosci., 2019, 21(1), 53-60.
[PMID: 31607780]
[20]
Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors, 2020, 10(8), 101.
[http://dx.doi.org/10.3390/bios10080101] [PMID: 32824869]
[21]
Arumugasamy, S.K.; Chellasamy, G.; Gopi, S.; Govindaraju, S.; Yun, K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt. Chem., 2020, 123, 115766.
[http://dx.doi.org/10.1016/j.trac.2019.115766]
[22]
Niyonambaza, S.D.; Kumar, P.; Xing, P.; Mathault, J.; De Koninck, P.; Boisselier, E.; Boukadoum, M.; Miled, A. A review of neurotransmitters sensing methods for neuro-engineering research. Appl. Sci. , 2019, 9(21), 4719.
[http://dx.doi.org/10.3390/app9214719]
[23]
Xia, X.; Wang, Y.; Qin, Y.; Zhao, S.; Zheng, J.C. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev., 2022, 74, 101558.
[http://dx.doi.org/10.1016/j.arr.2021.101558] [PMID: 34990846]
[24]
Tiedje, K.E. Stevens, K.; Barnes, S.; Weaver, D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int., 2010, 57(3), 177-188.
[http://dx.doi.org/10.1016/j.neuint.2010.06.001] [PMID: 20540981]
[25]
Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; Busnatu, Ș.; Munteanu, C. Cellular and molecular targets for non-invasive, non-pharmacological therapeutic/rehabilitative interventions in acute ischemic stroke. Int. J. Mol. Sci., 2022, 23(2), 907.
[http://dx.doi.org/10.3390/ijms23020907] [PMID: 35055089]
[26]
Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2022, 17(3), 543-549.
[http://dx.doi.org/10.4103/1673-5374.320970] [PMID: 34380884]
[27]
Satarker, S.; Bojja, S.L.; Gurram, P.C.; Mudgal, J.; Arora, D.; Nampoothiri, M. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells, 2022, 11(7), 1139.
[http://dx.doi.org/10.3390/cells11071139] [PMID: 35406702]
[28]
Murley, A.G.; Rowe, J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain, 2018, 141(5), 1263-1285.
[http://dx.doi.org/10.1093/brain/awx327] [PMID: 29373632]
[29]
Le Gall, L.; Anakor, E.; Connolly, O.; Vijayakumar, U.; Duddy, W.; Duguez, S. Molecular and cellular mechanisms affected in ALS. J. Pers. Med., 2020, 10(3), 101.
[http://dx.doi.org/10.3390/jpm10030101] [PMID: 32854276]
[30]
Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164.
[http://dx.doi.org/10.1016/j.jphs.2020.07.011] [PMID: 32807662]
[31]
Moraes, B.J.; Coelho, P.; Fão, L.; Ferreira, I.L.; Rego, A.C. Modified glutamatergic postsynapse in neurodegenerative disorders. Neuroscience, 2021, 454, 116-139.
[http://dx.doi.org/10.1016/j.neuroscience.2019.12.002] [PMID: 31887357]
[32]
Kazama, M.; Kato, Y.; Kakita, A.; Noguchi, N.; Urano, Y.; Masui, K.; Niida-Kawaguchi, M.; Yamamoto, T.; Watabe, K.; Kitagawa, K.; Shibata, N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology, 2020, 40(6), 587-598.
[http://dx.doi.org/10.1111/neup.12716] [PMID: 33305472]
[33]
Qu, Y.; Shi, J.; Tang, Y.; Zhao, F.; Li, S.; Meng, J.; Tang, J.; Lin, X.; Peng, X.; Mu, D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol., 2016, 279, 223-231.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.011] [PMID: 26980487]
[34]
Gao, F.; Yin, X.; Edden, R.A.E.; Evans, A.C.; Xu, J.; Cao, G.; Li, H.; Li, M.; Zhao, B.; Wang, J.; Wang, G. Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis. Hippocampus, 2018, 28(11), 813-823.
[http://dx.doi.org/10.1002/hipo.23001] [PMID: 30069963]
[35]
Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The dual role of glutamatergic neurotransmission in Alzheimer’s disease: From pathophysiology to pharmacotherapy. Int. J. Mol. Sci., 2020, 21(20), 7452.
[http://dx.doi.org/10.3390/ijms21207452] [PMID: 33050345]
[36]
Madeira, C.; Vargas-Lopes, C.; Brandão, C.O.; Reis, T.; Laks, J.; Panizzutti, R.; Ferreira, S.T. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front. Psychiatry, 2018, 9, 561.
[http://dx.doi.org/10.3389/fpsyt.2018.00561] [PMID: 30459657]
[37]
Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.S.; Yung, K.K.L. Roles of glutamate receptors in Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(18), 4391.
[http://dx.doi.org/10.3390/ijms20184391] [PMID: 31500132]
[38]
Tsuang, D.W.; Greenwood, T.A.; Jayadev, S.; Davis, M.; Shutes-David, A.; Bird, T.D. A genetic study of psychosis in Huntington’s disease: Evidence for the involvement of glutamate signaling pathways. J. Huntingtons Dis., 2018, 7(1), 51-59.
[http://dx.doi.org/10.3233/JHD-170277] [PMID: 29480208]
[39]
Alcoreza, O.B.; Patel, D.C.; Tewari, B.P.; Sontheimer, H. Dysregulation of ambient glutamate and glutamate receptors in epilepsy: An astrocytic perspective. Front. Neurol., 2021, 12, 652159.
[http://dx.doi.org/10.3389/fneur.2021.652159] [PMID: 33828523]
[40]
Koshal, P.; Jamwal, S.; Kumar, P. Glucagon-like Peptide-1 (GLP- 1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology, 2018, 136(Pt B), 271-279.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.015] [PMID: 29129776]
[41]
Ochoa-de la Paz, L.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev. Neurother., 2019, 19(4), 289-291.
[http://dx.doi.org/10.1080/14737175.2019.1593827] [PMID: 30892104]
[42]
Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[43]
Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693(Pt B), 128-133.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015 ] [PMID: 29903615]
[44]
Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci., 2022, 23(11), 5954.
[http://dx.doi.org/10.3390/ijms23115954] [PMID: 35682631]
[45]
Kölker, S. Metabolism of amino acid neurotransmitters: The synaptic disorder underlying inherited metabolic diseases. J. Inherit. Metab. Dis., 2018, 41(6), 1055-1063.
[http://dx.doi.org/10.1007/s10545-018-0201-4] [PMID: 29869166]
[46]
Juliá-Palacios, N.; Molina-Anguita, C.; Sigatulina Bondarenko, M.; Cortès-Saladelafont, E.; Aparicio, J.; Cuadras, D.; Horvath, G.; Fons, C.; Artuch, R.; García-Cazorla, À. Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. Dev. Med. Child Neurol., 2022, 64(7), 915-923.
[http://dx.doi.org/10.1111/dmcn.15140] [PMID: 35833444]
[47]
Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines, 2021, 9(2), 109.
[http://dx.doi.org/10.3390/biomedicines9020109] [PMID: 33499192]
[48]
Swamy, B.K.; Shiprath, K.; Rakesh, G.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Naidu, K.C.; Ramesh, S.; Suresh, K.; Ratnamala, A. Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/graphene modified graphite electrode. Biointerface Res. Appl. Chem., 2020, 10(3), 5599-5609.
[http://dx.doi.org/10.33263/BRIAC103.599609]
[49]
Swamy, B.K.; Shiprath, K.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Ratnamala, A.; Naidu, K.C.; Ramesh, S.; Babu, K.S. Electrochemical detection of dopamine and tyrosine using metal oxide (MO, M= Cu and Ni) modified graphite electrode: A comparative study. Biointerface Res. Appl. Chem., 2020, 10(5), 6460-6473.
[http://dx.doi.org/10.33263/BRIAC105.64606473]
[50]
Burnstock, G. Chemical names. Trends Pharmacol. Sci., 2006, 3(27), 166-176.
[http://dx.doi.org/10.1016/j.tips.2006.01.005] [PMID: 16487603]
[51]
Nowaczyk, A.; Kowalska, M.; Nowaczyk, J. Grześk, G. Carbon monoxide and nitric oxide as examples of the youngest class of transmitters. Int. J. Mol. Sci., 2021, 22(11), 6029.
[http://dx.doi.org/10.3390/ijms22116029] [PMID: 34199647]
[52]
Folasire, O.; Mills, K.A.; Sellers, D.J.; Chess-Williams, R. Three gaseous neurotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, are involved in the neurogenic relaxation responses of the porcine internal anal sphincter. J. Neurogastroenterol. Motil., 2015, 22(1), 141-148.
[http://dx.doi.org/10.5056/jnm15036] [PMID: 26486177]
[53]
You, Y.; Ikezu, T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis., 2019, 130, 104512.
[http://dx.doi.org/10.1016/j.nbd.2019.104512] [PMID: 31229685]
[54]
Verweij, F.J.; Bebelman, M.P.; Jimenez, C.R.; Garcia-Vallejo, J.J.; Janssen, H.; Neefjes, J.; Knol, J.C.; de Goeij-de Haas, R.; Piersma, S.R.; Baglio, S.R.; Verhage, M.; Middeldorp, J.M.; Zomer, A.; van Rheenen, J.; Coppolino, M.G.; Hurbain, I.; Raposo, G.; Smit, M.J.; Toonen, R.F.G.; van Niel, G.; Pegtel, D.M. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol., 2018, 217(3), 1129-1142.
[http://dx.doi.org/10.1083/jcb.201703206] [PMID: 29339438]
[55]
Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The emerging role of exosomes in mental disorders. Transl. Psychiatry, 2019, 9(1), 122.
[http://dx.doi.org/10.1038/s41398-019-0459-9] [PMID: 30923321]
[56]
Shi, M.; Liu, C.; Cook, T.J.; Bullock, K.M.; Zhao, Y.; Ginghina, C.; Li, Y.; Aro, P.; Dator, R.; He, C.; Hipp, M.J.; Zabetian, C.P.; Peskind, E.R.; Hu, S.C.; Quinn, J.F.; Galasko, D.R.; Banks, W.A.; Zhang, J. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol., 2014, 128(5), 639-650.
[http://dx.doi.org/10.1007/s00401-014-1314-y] [PMID: 24997849]
[57]
Rudolph, L.M.; Cornil, C.A.; Mittelman-Smith, M.A.; Rainville, J.R.; Remage-Healey, L.; Sinchak, K.; Micevych, P.E. Actions of steroids: New neurotransmitters. J. Neurosci., 2016, 36(45), 11449-11458.
[http://dx.doi.org/10.1523/JNEUROSCI.2473-16.2016] [PMID: 27911748]
[58]
D’Aniello, S.; Somorjai, I.; Garcia-Fernàndez, J.; Topo, E.; D’Aniello, A. D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J., 2011, 25(3), 1014-1027.
[http://dx.doi.org/10.1096/fj.10-168492] [PMID: 21163862]
[59]
Relja, M. Pathophysiology and classification of neurodegenerative diseases. EJIFCC, 2004, 15(3), 97-99.
[PMID: 29988912]
[60]
Bennett, D.A.; Beckett, L.A.; Murray, A.M.; Shannon, K.M.; Goetz, C.G.; Pilgrim, D.M.; Evans, D.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N. Engl. J. Med., 1996, 334(2), 71-76.
[http://dx.doi.org/10.1056/NEJM199601113340202] [PMID: 8531961]
[61]
Norris, F.; Shepherd, R.; Denys, E.; U, K.; Mukai, E.; Elias, L.; Holden, D.; Norris, H. Onset, natural history and outcome in idiopathic adult motor neuron disease. J. Neurol. Sci., 1993, 118(1), 48-55.
[http://dx.doi.org/10.1016/0022-510X(93)90245-T] [PMID: 8229050]
[62]
Margolis, R.L.; McInnis, M.G.; Rosenblatt, A.; Ross, C.A. Trinucleotide repeat expansion and neuropsychiatric disease. Arch. Gen. Psychiatry, 1999, 56(11), 1019-1031.
[http://dx.doi.org/10.1001/archpsyc.56.11.1019] [PMID: 10565502]
[63]
Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[64]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[65]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[66]
Dauer, W.; Przedborski, S. Parkinson’s disease. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[67]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[68]
Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Mierke, D.F.; Honda, T. An exceptionally potent inducer of cytoprotective enzymes: Elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem., 2010, 285(44), 33747-33755.
[http://dx.doi.org/10.1074/jbc.M110.163485] [PMID: 20801881]
[69]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[70]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[71]
Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71(2), 621S-629S.
[http://dx.doi.org/10.1093/ajcn/71.2.621s] [PMID: 10681270]
[72]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[73]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615.
[http://dx.doi.org/10.1016/j.tips.2008.09.001] [PMID: 18838179]
[74]
Montine, K.S.; Reich, E.; Neely, M.D.; Sidell, K.R.; Olson, S.J.; Markesbery, W.R.; Montine, T.J. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J. Neuropathol. Exp. Neurol., 1998, 57(5), 415-425.
[http://dx.doi.org/10.1097/00005072-199805000-00005] [PMID: 9596412]
[75]
Ahmed, N.; Ahmed, U.; Thornalley, P.J.; Hager, K.; Fleischer, G.; Münch, G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem., 2005, 92(2), 255-263.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02864.x] [PMID: 15663474]
[76]
Choi, J.; Rees, H.D.; Weintraub, S.T.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J. Biol. Chem., 2005, 280(12), 11648-11655.
[http://dx.doi.org/10.1074/jbc.M414327200] [PMID: 15659387]
[77]
Wong, A.; Lüth, H.J.; Deuther-Conrad, W.; Dukic-Stefanovic, S.; Gasic-Milenkovic, J.; Arendt, T.; Münch, G. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res., 2001, 920(1-2), 32-40.
[http://dx.doi.org/10.1016/S0006-8993(01)02872-4] [PMID: 11716809]
[78]
Poppek, D.; Keck, S.; Ermak, G.; Jung, T.; Stolzing, A.; Ullrich, O.; Davies, K.J.A.; Grune, T. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem. J., 2006, 400(3), 511-520.
[http://dx.doi.org/10.1042/BJ20060463] [PMID: 16939415]
[79]
Keck, S.; Nitsch, R.; Grune, T.; Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J. Neurochem., 2003, 85(1), 115-122.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01642.x] [PMID: 12641733]
[80]
Bonda, D.J.; Lee, H.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 2011, 3(3), 267-270.
[http://dx.doi.org/10.1039/c0mt00074d] [PMID: 21298161]
[81]
Zhang, L.; Zhao, B.; Yew, D.T.; Kusiak, J.W.; Roth, G.S. Processing of Alzheimer’s amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells. Biochem. Biophys. Res. Commun., 1997, 235(3), 845-848.
[http://dx.doi.org/10.1006/bbrc.1997.6698] [PMID: 9207249]
[82]
Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.E.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 1998, 273(21), 12817-12826.
[http://dx.doi.org/10.1074/jbc.273.21.12817] [PMID: 9582309]
[83]
Atwood, C.S.; Scarpa, R.C.; Huang, X.; Moir, R.D.; Jones, W.D.; Fairlie, D.P.; Tanzi, R.E.; Bush, A.I. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem., 2000, 75(3), 1219-1233.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751219.x] [PMID: 10936205]
[84]
Atwood, C.S.; Obrenovich, M.E.; Liu, T.; Chan, H.; Perry, G.; Smith, M.A.; Martins, R.N. Amyloid-β a chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Res. Brain Res. Rev., 2003, 43(1), 1-16.
[http://dx.doi.org/10.1016/S0165-0173(03)00174-7] [PMID: 14499458]
[85]
Cherny, R.A.; Barnham, K.J.; Lynch, T.; Volitakis, I.; Li, Q.X.; McLean, C.A.; Multhaup, G.; Beyreuther, K.; Tanzi, R.E.; Masters, C.L.; Bush, A.I. Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimer’s disease. J. Struct. Biol., 2000, 130(2-3), 209-216.
[http://dx.doi.org/10.1006/jsbi.2000.4285] [PMID: 10940226]
[86]
González, H.; Pacheco, R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflammation, 2014, 11(1), 201.
[http://dx.doi.org/10.1186/s12974-014-0201-8] [PMID: 25441979]
[87]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[88]
Puspita, L.; Chung, S.Y.; Shim, J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9] [PMID: 29183391]
[89]
Zeevalk, G.D.; Razmpour, R.; Bernard, L.P. Glutathione and Parkinson’s disease: Is this the elephant in the room? Biomed. Pharmacother., 2008, 62(4), 236-249.
[http://dx.doi.org/10.1016/j.biopha.2008.01.017] [PMID: 18400456]
[90]
Torres-Vega, A.; Pliego-Rivero, B.F.; Otero-Ojeda, G.A.; Gómez-Oliván, L.M.; Vieyra-Reyes, P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr. Rev., 2012, 70(12), 679-692.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00521.x] [PMID: 23206282]
[91]
Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life, 2003, 55(6), 329-335.
[http://dx.doi.org/10.1080/1521654032000114320] [PMID: 12938735]
[92]
Hunot, S.; Boissière, F.; Faucheux, B.; Brugg, B.; Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Nitric oxide synthase and neuronal vulnerability in parkinson’s disease. Neuroscience, 1996, 72(2), 355-363.
[http://dx.doi.org/10.1016/0306-4522(95)00578-1] [PMID: 8737406]
[93]
Eve, D.J.; Nisbet, A.P.; Kingsbury, A.E.; Hewson, E.L.; Daniel, S.E.; Lees, A.J.; Marsden, C.D.; Foster, O.J.F. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res. Mol. Brain Res., 1998, 63(1), 62-71.
[http://dx.doi.org/10.1016/S0169-328X(98)00259-9] [PMID: 9838046]
[94]
Kikuchi, S.; Shinpo, K.; Ogata, A.; Tsuji, S.; Takeuchi, M.; Makita, Z.; Tashiro, K. Detection of N epsilon-(carboxymethyl) lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic lateral sclerosis and other motor neuron disorders: Official publication of the World Federation of Neurology. Res. Group Motor Neuron Dis., 2002, 3(2), 63-68.
[95]
Mendez, E.F.; Sattler, R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res., 2015, 1607, 26-35.
[http://dx.doi.org/10.1016/j.brainres.2014.09.041] [PMID: 25261695]
[96]
Lacomblez, L.; Bensimon, G.; Meininger, V.; Leigh, P.N.; Guillet, P. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet, 1996, 347(9013), 1425-1431.
[http://dx.doi.org/10.1016/S0140-6736(96)91680-3] [PMID: 8676624]
[97]
Yoshino, H.; Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph. Lateral Scler., 2006, 7(4), 247-251.
[http://dx.doi.org/10.1080/17482960600881870] [PMID: 17127563]
[98]
Louwerse, E.S.; Weverling, G.J.; Bossuyt, P.M.M.; Meyjes, F.E.P.; de Jong, J.M.B.V. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol., 1995, 52(6), 559-564.
[http://dx.doi.org/10.1001/archneur.1995.00540300031009] [PMID: 7763202]
[99]
Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384.
[http://dx.doi.org/10.1097/00005072-199805000-00001] [PMID: 9596408]
[100]
Li, S.H.; Li, X.J. Huntingtin and its role in neuronal degeneration. Neuroscientist, 2004, 10(5), 467-475.
[http://dx.doi.org/10.1177/1073858404266777] [PMID: 15359012]
[101]
Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of oxidant damage in Huntington’s disease: Translational strategies using antioxidants. Ann. N. Y. Acad. Sci., 2008, 1147(1), 79-92.
[http://dx.doi.org/10.1196/annals.1427.008] [PMID: 19076433]
[102]
Túnez, I.; Sánchez-López, F.; Agüera, E.; Fernández-Bolaños, R.; Sánchez, F.M.; Tasset-Cuevas, I. Important role of oxidative stress biomarkers in Huntington’s disease. J. Med. Chem., 2011, 54(15), 5602-5606.
[http://dx.doi.org/10.1021/jm200605a] [PMID: 21678912]
[103]
Johri, A.; Beal, M.F. Antioxidants in huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 664-674.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.014]
[104]
Kumar, A.; Ratan, R.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237.
[http://dx.doi.org/10.3233/JHD-160205] [PMID: 27662334]
[105]
Khan, F.; Kumar Garg, V.; Kumar Singh, A.; Tinku, T. Role of free radicals and certain antioxidants in the management of huntington’s disease: A review. J. Anal. Pharm. Res., 2018, 7(4), 386-392.
[http://dx.doi.org/10.15406/japlr.2018.07.00256]
[106]
Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front. Mol. Neurosci., 2018, 11, 329.
[http://dx.doi.org/10.3389/fnmol.2018.00329] [PMID: 30283298]
[107]
Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842.
[http://dx.doi.org/10.1021/bi9020378] [PMID: 20050630]
[108]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev., 2002, 23(5), 599-622.
[http://dx.doi.org/10.1210/er.2001-0039] [PMID: 12372842]
[109]
Liochev, S.I.; Fridovich, I. The role of O2.- in the production of HO.: In vitro and in vivo . Free Radic. Biol. Med., 1994, 16(1), 29-33.
[http://dx.doi.org/10.1016/0891-5849(94)90239-9] [PMID: 8299992]
[110]
Castro, L.; Tórtora, V.; Mansilla, S.; Radi, R. Aconitases: Non-redox iron-sulfur proteins sensitive to reactive species. Acc. Chem. Res., 2019, 52(9), 2609-2619.
[http://dx.doi.org/10.1021/acs.accounts.9b00150] [PMID: 31287291]
[111]
Zhang, H.; Forman, H.J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med., 2017, 111, 219-225.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.032] [PMID: 27876535]
[112]
Haque, R.; Uddin, S.N.; Hossain, A. Amyloid Beta (Aβ) and oxidative stress: Progression of alzheimer’s disease. Adv. Biotechnol. Microbiol., 2018, 11(1), 555802.
[http://dx.doi.org/10.19080/AIBM.2018.11.555802]
[113]
Galluzzi, S.; Zanardini, R.; Ferrari, C.; Gipponi, S.; Passeggia, I.; Rampini, M.; Sgrò, G.; Genovese, S.; Fiorito, S.; Palumbo, L.; Pievani, M.; Frisoni, G.B.; Epifano, F. Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: A 36-week, randomized, placebo-controlled trial. Nutr. J., 2022, 21(1), 64.
[http://dx.doi.org/10.1186/s12937-022-00817-6] [PMID: 36253765]
[114]
Mendoza, BM.; Ortiz, GG.; Romero, LS.; Lara, DL.; Martínez, MT.; Ramírez, MA.; Serrano, JA.; Pacheco-Moisés, FP. Dietary fish oil increases catalase activity in patients with probable Alzheimer’s disease. Nutr. Hosp., 2022, 39(6), 1364-1368.
[115]
Clark, D.O.; Xu, H.; Moser, L.; Adeoye, P.; Lin, A.W.; Tangney, C.C.; Risacher, S.L.; Saykin, A.J.; Considine, R.V.; Unverzagt, F.W. MIND food and speed of processing training in older adults with low education, the MINDSpeed Alzheimer’s disease prevention pilot trial. Contemp. Clin. Trials, 2019, 84, 105814.
[http://dx.doi.org/10.1016/j.cct.2019.105814] [PMID: 31326523]
[116]
Sala-Vila, A.; Valls-Pedret, C.; Rajaram, S.; Coll-Padrós, N.; Cofán, M.; Serra-Mir, M.; Pérez-Heras, A.M.; Roth, I.; Freitas-Simoes, T.M.; Doménech, M.; Calvo, C.; López-Illamola, A.; Bitok, E.; Buxton, N.K.; Huey, L.; Arechiga, A.; Oda, K.; Lee, G.J.; Corella, D.; Vaqué-Alcázar, L.; Sala-Llonch, R.; Bartrés-Faz, D.; Sabaté, J.; Ros, E. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts And Healthy Aging (WAHA) study: A randomized controlled trial. Am. J. Clin. Nutr., 2020, 111(3), 590-600.
[http://dx.doi.org/10.1093/ajcn/nqz328] [PMID: 31912155]
[117]
Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/2638703] [PMID: 32411323]
[118]
Tamtaji, O.R.; Heidari-soureshjani, R.; Asemi, Z.; Kouchaki, E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer’s disease: A randomized, double-blind, controlled trial. Phytother. Res., 2023, 37(7), 2957-2964.
[http://dx.doi.org/10.1002/ptr.7791] [PMID: 36861852]
[119]
Foroumandi, E.; Javan, R.; Moayed, L.; Fahimi, H.; Kheirabadi, F.; Neamatshahi, M.; Shogofteh, F.; Zarghi, A. The effects of fenugreek seed extract supplementation in patients with Alzheimer’s disease: A randomized, double-blind, placebo-controlled trial. Phytother. Res., 2023, 37(1), 285-294.
[http://dx.doi.org/10.1002/ptr.7612] [PMID: 36199177]
[120]
Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034] [PMID: 30642737]
[121]
Yang, T.; Wang, H.; Xiong, Y.; Chen, C.; Duan, K.; Jia, J.; Ma, F. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial. J. Alzheimers Dis., 2020, 78(4), 1509-1518.
[http://dx.doi.org/10.3233/JAD-200926] [PMID: 33164936]
[122]
Lee, W.J.; Shin, Y.W.; Kim, D.E.; Kweon, M.H.; Kim, M. Effect of desalted Salicornia europaea L. ethanol extract (PM-EE) on the subjects complaining memory dysfunction without dementia: A 12 week, randomized, double-blind, placebo-controlled clinical trial. Sci. Rep., 2020, 10(1), 19914.
[http://dx.doi.org/10.1038/s41598-020-76938-x] [PMID: 33199752]
[123]
Kamalashiran, C.; Sriyakul, K.; Pattaraarchachai, J.; Muengtaweepongsa, S. Outcomes of perilla seed oil as an additional neuroprotective therapy in patients with mild to moderate dementia: A randomized control trial. Curr. Alzheimer Res., 2019, 16(2), 146-155.
[http://dx.doi.org/10.2174/1567205016666181212153720] [PMID: 30543172]
[124]
Rosli, H.; Shahar, S.; Rajab, N.F.; Che Din, N.; Haron, H. The effects of polyphenols-rich tropical fruit juice on cognitive function and metabolomics profile - A randomized controlled trial in middle-aged women. Nutr. Neurosci., 2022, 25(8), 1577-1593.
[http://dx.doi.org/10.1080/1028415X.2021.1880312] [PMID: 33666540]
[125]
Awasthi, A.; Matsunaga, Y.; Yamada, T. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp. Neurol., 2005, 196(2), 282-289.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.001] [PMID: 16137679]
[126]
Giraldo, E.; Lloret, A.; Fuchsberger, T.; Viña, J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biol., 2014, 2, 873-877.
[http://dx.doi.org/10.1016/j.redox.2014.03.002] [PMID: 25061569]
[127]
Liu, Z.; Zhou, T.; Ziegler, AC.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 2525967.
[http://dx.doi.org/10.1155/2017/2525967]
[128]
Lees, A.J. Unresolved issues relating to the shaking palsy on the celebration of james parkinson’s 250th birthday. Mov. Disord., 2007, 22(S17), S327-S334.
[http://dx.doi.org/10.1002/mds.21684] [PMID: 18175393]
[129]
Miller, D.B.; O’Callaghan, J.P. Biomarkers of Parkinson’s disease: Present and future. Metabolism, 2015, 64(3), S40-S46.
[http://dx.doi.org/10.1016/j.metabol.2014.10.030] [PMID: 25510818]
[130]
Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci., 2018, 12, 114.
[http://dx.doi.org/10.3389/fncel.2018.00114] [PMID: 29755324]
[131]
Peplow, P.V.; Martinez, B. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease. Neural Regen. Res., 2018, 13(9), 1493-1506.
[http://dx.doi.org/10.4103/1673-5374.237108] [PMID: 30127102]
[132]
Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler., 2017, 23(8), 1123-1136.
[http://dx.doi.org/10.1177/1352458517694432] [PMID: 28273775]
[133]
Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann, H. Oxidative damage in multiple sclerosis lesions. Brain, 2011, 134(7), 1914-1924.
[http://dx.doi.org/10.1093/brain/awr128] [PMID: 21653539]
[134]
Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375.
[http://dx.doi.org/10.1007/s13311-014-0329-3] [PMID: 25567201]
[135]
Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; D’Amico, A.; Musarò, A.; Bertini, E. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum. Mol. Genet., 2017, 26(14), 2781-2790.
[http://dx.doi.org/10.1093/hmg/ddx173] [PMID: 28472288]
[136]
Fusco, M.; Skaper, S.D.; Coaccioli, S.; Varrassi, G.; Paladini, A. Degenerative joint diseases and neuroinflammation. Pain Pract., 2017, 17(4), 522-532.
[http://dx.doi.org/10.1111/papr.12551] [PMID: 28039964]
[137]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[138]
Varrassi, G.; Fusco, M.; Skaper, S.D.; Battelli, D.; Zis, P.; Coaccioli, S.; Pace, M.C.; Paladini, A. A pharmacological rationale to reduce the incidence of opioid induced tolerance and hyperalgesia: A review. Pain Ther., 2018, 7(1), 59-75.
[http://dx.doi.org/10.1007/s40122-018-0094-9] [PMID: 29594972]
[139]
Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother., 2004, 58(1), 39-46.
[http://dx.doi.org/10.1016/j.biopha.2003.11.004] [PMID: 14739060]
[140]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[141]
Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev., 2015, 2015, 610813.
[http://dx.doi.org/10.1155/2015/610813]
[142]
Dröse, S.; Brandt, U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J. Biol. Chem., 2008, 283(31), 21649-21654.
[http://dx.doi.org/10.1074/jbc.M803236200] [PMID: 18522938]
[143]
Mueller, A.M.; Yoon, B.H.; Sadiq, S.A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem., 2014, 289(33), 22888-22899.
[http://dx.doi.org/10.1074/jbc.M114.559583] [PMID: 24973214]
[144]
Tao, L.; Zhang, F.; Hao, L.; Wu, J.; Jia, J.; Liu, J.; Zheng, L.T.; Zhen, X. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-κB and JNK activation in microglia cells. J. Pharmacol. Sci., 2014, 125(4), 364-374.
[http://dx.doi.org/10.1254/jphs.14025FP] [PMID: 25018136]
[145]
Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis., 2011, 2(3), 242-256.
[PMID: 22396876]
[146]
Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x] [PMID: 1402908]
[147]
Navarro, A.; Boveris, A. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson’s disease. Front. Aging Neurosci., 2010, 2, 34.
[http://dx.doi.org/10.3389/fnagi.2010.00034] [PMID: 20890446]
[148]
Mecocci, P.; Beal, M.F.; Cecchetti, R.; Polidori, M.C.; Cherubini, A.; Chionne, F.; Avellini, L.; Romano, G.; Senin, U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol., 1997, 31(1), 53-64.
[http://dx.doi.org/10.1007/BF02815160] [PMID: 9271005]
[149]
Corral-Debrinski, M.; Horton, T.; Lott, M.T.; Shoffner, J.M.; Flint Beal, M.; Wallace, D.C. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat. Genet., 1992, 2(4), 324-329.
[http://dx.doi.org/10.1038/ng1292-324] [PMID: 1303288]
[150]
Imam, S.Z.; Karahalil, B.; Hogue, B.A.; Souza-Pinto, N.C.; Bohr, V.A. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol. Aging, 2006, 27(8), 1129-1136.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.06.002] [PMID: 16005114]
[151]
Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[152]
Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139.
[http://dx.doi.org/10.1007/s12325-019-01148-5] [PMID: 31782132]
[153]
Buccellato, F.R.; D’Anca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants, 2021, 10(9), 1353.
[http://dx.doi.org/10.3390/antiox10091353] [PMID: 34572985]
[154]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[155]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415] [PMID: 36106706]
[156]
Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol., 2023, 129, 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[157]
Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240.
[http://dx.doi.org/10.1111/cbdd.14210] [PMID: 36752710]
[158]
Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267.
[http://dx.doi.org/10.2174/1567202618666210604121233] [PMID: 34086550]