Unifying Theory and Experiments: Multi-Target Pharmacology of Dajihan Pill Against Hyperlipidemia

Page: [3271 - 3284] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The increasing incidence of hyperlipidemia (HLP) is attributed to the imbalance in redox homeostasis, aberrant lipid metabolism, and the excessive intake of empty calories. Dajihan Pill (DJHP) is a Traditional Chinese Medicine (TCM) formula composed of Zingiberis Rhizoma (ZR), Piperis Longi Fructus (PLF), Alpiniae Officinarum Rhizome (AOR), and Cinnamomi Cortex (CC) in a ratio of 3:2:3:2. It exhibits a significant preventive effect on HLP. Certainly, the active components and the precise mechanism of action are not fully understood. Therefore, this study aims to elucidate the preventive and ameliorative mechanisms of DJHP against HLP by integrating network pharmacology, molecular docking, and experimental validation.

Method: Based on the pharmacological method, active ingredients in DJHP and targets were extracted from Traditional Chinese Medicine System Pharmacology (TCMSP) and UniProt. Then core compounds and targets were obtained by constructing “compounds-targets-disease” and proteinprotein interaction (PPI) network. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to elucidate further the associated action mechanism. The molecular binding mechanisms between the core ingredients and targets were elucidated through molecular docking. Additionally, the antioxidant capacities of DJHP extracts were investigated by assessing their DPPH, hydroxyl, and ABTS radical scavenging activities.

Results: A total of 45 active compounds and 258 targets were identified in DJHP. Network analysis indicated that quercetin, beta-sitosterol, kaempferol, and oleic acid might serve as core bioactive compounds. Seven core targets, including AKT1, INS, and TNF, were identified as potential preventive targets. GO analysis suggested the improvement of HLP by DJHP may be related to the lipid metabolic process, high-density lipoprotein particle, triglyceride binding, and inflammatory response. The KEGG analysis indicated TNF, HIF-1, and AMPK signaling pathways were involved. The observations of active compounds binding with core targets indicated an excellent combination. Additionally, antioxidant results showed that DJHP exhibited significant DPPH, hydroxyl, and ABTS radical scavenging activities.

Conclusion: Theoretical and experimental investigations indicate that DJHP can effectively modulate various signaling pathways and enhance the redox system, thus mitigating HLP. Our work provided a basis for the pharmacological study of DJHP in preventing HLP and further research.

[1]
Vinci, P.; Panizon, E.; Tosoni, L.M.; Cerrato, C.; Pellicori, F.; Mearelli, F.; Biasinutto, C.; Fiotti, N.; Di Girolamo, F.G.; Biolo, G. Statin-associated myopathy: Emphasis on mechanisms and targeted therapy. Int. J. Mol. Sci., 2021, 22(21), 11687.
[http://dx.doi.org/10.3390/ijms222111687] [PMID: 34769118]
[2]
Su, X.; Peng, H.; Chen, X.; Wu, X.; Wang, B. Hyperlipidemia and hypothyroidism. Clin. Chim. Acta, 2022, 527, 61-70.
[http://dx.doi.org/10.1016/j.cca.2022.01.006] [PMID: 35038435]
[3]
King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol., 2022, 43(1), 78-92.
[http://dx.doi.org/10.1016/j.it.2021.11.007] [PMID: 34942082]
[4]
Oliveira, T.W.S.; Leandro, C.G.; de Jesus Deiró, T.C.B.; dos Santos Perez, G.; da França Silva, D.; Druzian, J.I.; Couto, R.D.; Barreto-Medeiros, J.M. A perinatal palatable high-fat diet increases food intake and promotes hypercholesterolemia in adult rats. Lipids, 2011, 46(11), 1071-1074.
[http://dx.doi.org/10.1007/s11745-011-3604-7] [PMID: 21847693]
[5]
Taghizadeh, E.; Mardani, R.; Rostami, D.; Taghizadeh, H.; Bazireh, H.; Hayat, S.M.G. Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: A review. J. Cell. Biochem., 2019, 120(6), 8891-8898.
[http://dx.doi.org/10.1002/jcb.28311] [PMID: 30556165]
[6]
Kaviarasan, K.; Kalaiarasi, P.; Pugalendi, V. Antioxidant efficacy of flavonoid-rich fraction from Spermacoce hispida in hyperlipidemic rats. J. Appl. Biomed., 2008, 6(4), 165-176.
[http://dx.doi.org/10.32725/jab.2008.020]
[7]
Huang, M.Z.; Li, J.Y. Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties. Acta Physiol., 2020, 228(1), e13351.
[http://dx.doi.org/10.1111/apha.13351] [PMID: 31344326]
[8]
Ta, N.; A, L.; e, E.; Qi, R.; Mu, X.; Feng, L.; Ba, G.; Li, Y.; Zhang, J.; Bai, L.; Fu, M. Metabolomics analysis reveals amelioration effects of yellowhorn tea extract on hyperlipidemia, inflammation, and oxidative stress in high-fat diet-fed mice. Front. Nutr., 2023, 10, 1087256.
[http://dx.doi.org/10.3389/fnut.2023.1087256] [PMID: 36742424]
[9]
Fischer, S.; Schatz, U.; Julius, U. Practical recommendations for the management of hyperlipidemia. Atheroscler. Suppl., 2015, 18, 194-198.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2015.02.029] [PMID: 25936326]
[10]
Murray, C.J.L.; Lopez, A.D. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet, 1997, 349(9061), 1269-1276.
[http://dx.doi.org/10.1016/S0140-6736(96)07493-4] [PMID: 9142060]
[11]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Magid, D.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R.; Moy, C.S.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Schreiner, P.J.; Sorlie, P.D.; Stein, J.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation, 2013, 127(1), e6-e245.
[http://dx.doi.org/10.1161/CIR.0b013e31828124ad] [PMID: 23239837]
[12]
Toth, P.P. Drug treatment of hyperlipidaemia: A guide to the rational use of lipid-lowering drugs. Drugs, 2010, 70(11), 1363-1379.
[http://dx.doi.org/10.2165/10898610-000000000-00000] [PMID: 20614945]
[13]
Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S.J.; Grobbee, D.E.; Cass, A.; Chalmers, J.; Perkovic, V. Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet, 2010, 375(9729), 1875-1884.
[http://dx.doi.org/10.1016/S0140-6736(10)60656-3] [PMID: 20462635]
[14]
Liu, Z.L.; Liu, J.P.; Zhang, A.L.; Wu, Q.; Ruan, Y.; Lewith, G.; Visconte, D. Chinese herbal medicines for hypercholesterolemia. Cochrane Database Syst. Rev., 2011, 6(7), CD008305.
[http://dx.doi.org/10.1002/14651858.CD008305.pub2]
[15]
Li, S.P.; Zhao, J.; Yang, B. Strategies for quality control of Chinese medicines. J. Pharm. Biomed. Anal., 2011, 55(4), 802-809.
[http://dx.doi.org/10.1016/j.jpba.2010.12.011] [PMID: 21215546]
[16]
Dou, X.; Wo, X.; Fan, C. Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine. Chin. J. Integr. Med., 2008, 14(1), 71-75.
[http://dx.doi.org/10.1007/s11655-008-0071-y] [PMID: 18568331]
[17]
Li, X.; Ao, M.; Zhang, C.; Fan, S.; Chen, Z.; Yu, L. Zingiberis Rhizoma Recens: A review of its traditional uses, phytochemistry, pharmacology, and toxicology. Evid. Based Complement. Alternat. Med., 2021, 2021, 6668990.
[18]
Young, S.C.; Wang, C.J.; Lin, J.J.; Peng, P.L.; Hsu, J.L.; Chou, F.P. Protection effect of piper betel leaf extract against carbon tetrachloride-induced liver fibrosis in rats. Arch. Toxicol., 2007, 81(1), 45-55.
[http://dx.doi.org/10.1007/s00204-006-0106-0] [PMID: 16676162]
[19]
Christina, A.J.M.; Saraswathy, G.R.; Heison Robert, S.J.; Kothai, R.; Chidambaranathan, N.; Nalini, G.; Therasal, R.L. Inhibition of CCl4-induced liver fibrosis by Piper longum Linn.? Phytomedicine, 2006, 13(3), 196-198.
[http://dx.doi.org/10.1016/j.phymed.2004.01.009] [PMID: 16428029]
[20]
Liang, X.; Wang, P.; Yang, C.; Huang, F.; Wu, H.; Shi, H.; Wu, X. Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production. Front. Pharmacol., 2021, 12, 646628.
[http://dx.doi.org/10.3389/fphar.2021.646628] [PMID: 33981228]
[21]
Zhang, J.Q.; Wang, Y.; Li, H.L.; Wen, Q.; Yin, H.; Zeng, N.K.; Lai, W-Y.; Wei, N.; Cheng, S-Q.; Kang, S-L.; Chen, F.; Li, Y-B. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS. Anal. Methods, 2015, 7(12), 4919-4926.
[http://dx.doi.org/10.1039/C5AY00647C]
[22]
Eram, S.; Mujahid, M.; Bagga, P.; Ahsan, F.; Rahman, M.A. Hepatoprotective evaluation of Galanga (Alpinia Officinarum) rhizome extract against antitubercular drugs induced hepatotoxicity in rats. J. Herbs Spices Med. Plants, 2020, 26(2), 113-125.
[http://dx.doi.org/10.1080/10496475.2019.1679692]
[23]
Lee, J.; Kim, K.A.; Jeong, S.; Lee, S.; Park, H.J.; Kim, N.J.; Lim, S. Anti-inflammatory, anti-nociceptive, and anti-psychiatric effects by the rhizomes of Alpinia officinarum on complete Freund’s adjuvant-induced arthritis in rats. J. Ethnopharmacol., 2009, 126(2), 258-264.
[http://dx.doi.org/10.1016/j.jep.2009.08.033] [PMID: 19715749]
[24]
Kim, S-J.; Chung, J-W.; Kim, J.J. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II. Pharmacogn. Mag., 2011, 7(28), 314-319.
[http://dx.doi.org/10.4103/0973-1296.90412] [PMID: 22262934]
[25]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front. Pharmacol., 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[26]
Guan, T.Z.; Bian, C.F.; Li, N.; Gao, Y.; Ren, C-X.; Zheng, X.F.; Hang, S-J.; Li, Q.; Yang, Z.Q.; Min, E-H. Molecular mechanism of Guihuang traditional drink in prevention of thrombotic diseases explored through network pharmacology, quantum chemical calculation, and molecular docking-based strategy. Chin. J. Anal. Chem., 2023, 51(2), 100216.
[http://dx.doi.org/10.1016/j.cjac.2022.100216]
[27]
Shao, Y.; Zhang, Y.; Wu, R.; Dou, L.; Cao, F.; Yan, Y.; Tang, Y.; Huang, C.; Zhao, Y.; Zhang, J. Network pharmacology approach to investigate the multitarget mechanisms of Zhishi Rhubarb Soup on acute cerebral infarction. Pharm. Biol., 2022, 60(1), 1394-1406.
[http://dx.doi.org/10.1080/13880209.2022.2103718] [PMID: 35938510]
[28]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[29]
Li, X.; Lin, H.; Wang, Q.; Cui, L.; Luo, H.; Luo, L. Chemical composition and pharmacological mechanism of shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19). Drug Dev. Ind. Pharm., 2020, 46(12), 1947-1959.
[http://dx.doi.org/10.1080/03639045.2020.1826510] [PMID: 33054436]
[30]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[31]
Stelzer, G.; Dalah, I.; Stein, T.; Satanower, Y.; Rosen, N.; Nativ, N.; Oz-Levi, D.; Olender, T.; Belinky, F.; Bahir, I.; Krug, H.; Perco, P.; Mayer, B.; Kolker, E.; Safran, M.; Lancet, D. In-silico human genomics with GeneCards. Hum. Genomics, 2011, 5(6), 709-717.
[http://dx.doi.org/10.1186/1479-7364-5-6-709] [PMID: 22155609]
[32]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[33]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[34]
Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J., 2021, 19, 2960-2967.
[http://dx.doi.org/10.1016/j.csbj.2021.05.015] [PMID: 34136095]
[35]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[36]
Brandes, U.; Borgatti, S.P.; Freeman, L.C. Maintaining the duality of closeness and betweenness centrality. Soc. Networks, 2016, 44, 153-159.
[http://dx.doi.org/10.1016/j.socnet.2015.08.003]
[37]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), P3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[38]
Yuan, F.; Pan, X.; Chen, L.; Zhang, Y.H.; Huang, T.; Cai, Y.D. Analysis of protein-protein functional associations by using gene ontology and KEGG pathway. Biomed Res. Int., 2019, 2019, 4963289.
[http://dx.doi.org/10.1155/2019/4963289]
[39]
Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One, 2017, 12(9), e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[40]
Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87.
[http://dx.doi.org/10.1007/s12551-013-0130-2] [PMID: 28509958]
[41]
Tanchuk, V.Y.; Tanin, V.O.; Vovk, A.I.; Poda, G. A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des., 2016, 87(4), 618-625.
[http://dx.doi.org/10.1111/cbdd.12697] [PMID: 26643167]
[42]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[43]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[44]
Sussman, J.L.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J.; Ritter, O.; Abola, E.E. Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D Biol. Crystallogr., 1998, 54(6), 1078-1084.
[http://dx.doi.org/10.1107/S0907444998009378] [PMID: 10089483]
[45]
Ruddick, K.R.; Parrill, A.L.; Petersen, R.L. Introductory molecular orbital theory: An honors general chemistry computational lab as implemented using three-dimensional modeling software. J. Chem. Educ., 2012, 89(11), 1358-1363.
[http://dx.doi.org/10.1021/ed2003719]
[46]
Pawar, S.S.; Rohane, S.H. Review on discovery studio: An important tool for molecular docking. AJRC, 2021, 14(1), 86-88.
[47]
Vulić, J.; Tumbas, V.; Savatović, S.; Djilas, S.; Ćetković, G.; Čanadanović-Brunet, J. Polyphenolic content and antioxidant activity of the four berry fruits pomace extracts. Acta Period. Technol., 2011, (42), 271-279.
[http://dx.doi.org/10.2298/APT1142271V]
[48]
Jang, M.H.; Kim, H.Y.; Kang, K.S.; Yokozawa, T.; Park, J.H. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch. Pharm. Res., 2009, 32(3), 341-345.
[http://dx.doi.org/10.1007/s12272-009-1305-z] [PMID: 19387576]
[49]
Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J. Agric. Food Chem., 2009, 57(4), 1337-1343.
[http://dx.doi.org/10.1021/jf802507j] [PMID: 19170638]
[50]
Patra, R.; Das, N.C.; Mukherjee, S. Exploring the differential expression and prognostic significance of the COL11A1 gene in human colorectal carcinoma: An integrated bioinformatics approach. Front. Genet., 2021, 12, 608313.
[http://dx.doi.org/10.3389/fgene.2021.608313] [PMID: 33597969]
[51]
Gao, S.; Sun, J.; Wang, X.; Hu, Y.; Feng, Q.; Gou, X. Research on the mechanism of qushi huayu decoction in the intervention of nonalcoholic fatty liver disease based on network pharmacology and molecular docking Technology. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/1704960] [PMID: 33204683]
[52]
Rayan, A. New tips for structure prediction by comparative modeling. Bioinformation, 2009, 3(6), 263-267.
[http://dx.doi.org/10.6026/97320630003263] [PMID: 19255646]
[53]
Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Mol. Pharm., 2012, 9(4), 996-1010.
[http://dx.doi.org/10.1021/mp300023x] [PMID: 22380484]
[54]
Liu, J.; Liu, J.; Tong, X.; Peng, W.; Wei, S.; Sun, T.; Wang, Y.; Zhang, B.; Li, W. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des. Devel. Ther., 2021, 15, 3255-3276.
[http://dx.doi.org/10.2147/DDDT.S319786] [PMID: 34349502]
[55]
Wang, Y.; Gu, W.; Kui, F.; Gao, F.; Niu, Y.; Li, W.; Zhang, Y.; Guo, Z.; Du, G. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr. Res., 2021, 65, 65.
[http://dx.doi.org/10.29219/fnr.v65.5623] [PMID: 34908920]
[56]
Wang, L.; Xiong, F.; Zhao, S.; Yang, Y.; Zhou, G. Network pharmacology combined with molecular docking to explore the potential mechanisms for the antioxidant activity of Rheum tanguticum seeds. BMC. Complement. Med. Ther., 2022, 22(1), 1-15.
[57]
Fischer, F.R.; Schweizer, W.B.; Diederich, F. Substituent effects on the aromatic edge-to-face interaction. Chem. Commun., 2008, (34), 4031-4033.
[http://dx.doi.org/10.1039/b809058k] [PMID: 18758616]
[58]
Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science, 1983, 221(4612), 709-713.
[http://dx.doi.org/10.1126/science.6879170] [PMID: 6879170]
[59]
Wang, L.; Zheng, W.; Yang, J.; Ali, A.; Qin, H. Mechanism of astragalus membranaceus alleviating acquired hyperlipidemia induced by high-fat diet through regulating lipid metabolism. Nutrients, 2022, 14(5), 954.
[http://dx.doi.org/10.3390/nu14050954] [PMID: 35267929]
[60]
Rauf, A.; Akram, M.; Anwar, H.; Daniyal, M.; Munir, N.; Bawazeer, S.; Bawazeer, S.; Rebezov, M.; Bouyahya, A.; Shariati, M.A.; Thiruvengadam, M.; Sarsembenova, O.; Mabkhot, Y.N.; Islam, M.N.; Emran, T.B.; Hodak, S.; Zengin, G.; Khan, H. Therapeutic potential of herbal medicine for the management of hyperlipidemia: Latest updates. Environ. Sci. Pollut. Res. Int., 2022, 29(27), 40281-40301.
[http://dx.doi.org/10.1007/s11356-022-19733-7] [PMID: 35320475]
[61]
Feng, Y.; Gao, S.; Zhu, T.; Sun, G.; Zhang, P.; Huang, Y.; Qu, S.; Du, X.; Mou, D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front. Nutr., 2022, 9, 936229.
[http://dx.doi.org/10.3389/fnut.2022.936229] [PMID: 35990322]
[62]
Zhu, L.; Luo, X.; Jin, Z. Effect of resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats. Asian-Australas. J. Anim. Sci., 2008, 21(6), 890-895.
[http://dx.doi.org/10.5713/ajas.2008.70638]
[63]
Liu, C.M.; Ma, J.Q.; Sun, Y.Z. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem. Toxicol., 2011, 49(12), 3119-3127.
[http://dx.doi.org/10.1016/j.fct.2011.09.007] [PMID: 22001170]
[64]
Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods, 2015, 14, 111-125.
[http://dx.doi.org/10.1016/j.jff.2015.01.043]
[65]
Zitting, K.M.; Vetrivelan, R.; Yuan, R.K.; Vujovic, N.; Wang, W.; Bandaru, S.S.; Quan, S.F.; Klerman, E.B.; Scheer, F.A.J.L.; Buxton, O.M.; Williams, J.S.; Duffy, J.F.; Saper, C.B.; Czeisler, C.A. Chronic circadian disruption on a high-fat diet impairs glucose tolerance. Metabolism, 2022, 130, 155158.
[http://dx.doi.org/10.1016/j.metabol.2022.155158] [PMID: 35150732]
[66]
Wang, L.; Lin, Q.; Yang, T.; Liang, Y.; Nie, Y.; Luo, Y.; Shen, J.; Fu, X.; Tang, Y.; Luo, F. Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice. J. Agric. Food Chem., 2017, 65(38), 8374-8385.
[http://dx.doi.org/10.1021/acs.jafc.7b03230] [PMID: 28853872]
[67]
Liu, G.; Liu, F.; Xiao, L.; Kuang, Q.; He, X.; Wang, Y.; Wang, Y. Narrative review of the mechanisms of action of dachengqi decoction in the treatment of hyperlipidemic pancreatitis on six-hollow-organs to be unblocked theory. Ann. Palliat. Med., 2020, 9(4), 2323-2329.
[http://dx.doi.org/10.21037/apm-20-1332] [PMID: 32692237]
[68]
Kandaswami, C.; Middleton, E., Jr Free radical scavenging and antioxidant activity of plant flavonoids. In: Free Radicals in Diagnostic Medicine; Springer, 1994; pp. 351-376.
[http://dx.doi.org/10.1007/978-1-4615-1833-4_25]
[69]
Walle, T.; Eaton, E.A.; Walle, U.K. Quercetin, a potent and specific inhibitor of the human P-form phenolsulfotransferase. Biochem. Pharmacol., 1995, 50(5), 731-734.
[http://dx.doi.org/10.1016/0006-2952(95)00190-B] [PMID: 7669078]
[70]
Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364.
[http://dx.doi.org/10.1002/ptr.7144] [PMID: 34101925]
[71]
Sannappa Gowda, N.G.; Shiragannavar, V.D.; Puttahanumantharayappa, L.D.; Shivakumar, A.T.; Dallavalasa, S.; Basavaraju, C.G.; Bhat, S.S.; Prasad, S.K.; Vamadevaiah, R.M.; Madhunapantula, S.V.; Santhekadur, P.K. Quercetin activates vitamin D receptor and ameliorates breast cancer induced hepatic inflammation and fibrosis. Front. Nutr., 2023, 10, 1158633.
[http://dx.doi.org/10.3389/fnut.2023.1158633] [PMID: 37153919]
[72]
Ambavade, S.D.; Misar, A.V.; Ambavade, P.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: A review. Orient. Pharm. Exp. Med., 2014, 14(3), 193-211.
[http://dx.doi.org/10.1007/s13596-014-0151-9]
[73]
Sugano, M.; Morioka, H.; Ikeda, I. A comparison of hypocholesterolemic activity of β-sitosterol and β-sitostanol in rats. J. Nutr., 1977, 107(11), 2011-2019.
[http://dx.doi.org/10.1093/jn/107.11.2011] [PMID: 908959]
[74]
Chang, C.; Tzeng, T.F.; Liou, S.S.; Chang, Y.S.; Liu, I.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med., 2011, 77(17), 1876-1882.
[http://dx.doi.org/10.1055/s-0031-1279992] [PMID: 21728151]
[75]
Alexander, R.W. Theodore cooper memorial lecture. hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: A new perspective. Hypertension, 1995, 25(2), 155-161.
[http://dx.doi.org/10.1161/01.HYP.25.2.155] [PMID: 7843763]
[76]
Qian, Y.; Li, M.; Wang, W.; Wang, H.; Zhang, Y.; Hu, Q.; Zhao, X.; Suo, H. Effects of lactobacillus casei YBJ02 on lipid metabolism in hyperlipidemic mice. J. Food Sci., 2019, 84(12), 3793-3803.
[http://dx.doi.org/10.1111/1750-3841.14787] [PMID: 31762034]
[77]
Sigal, G.A.; Medeiros-Neto, G.; Vinagre, J.C.; Diament, J.; Maranhão, R.C. Lipid metabolism in subclinical hypothyroidism: Plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment. Thyroid, 2011, 21(4), 347-353.
[http://dx.doi.org/10.1089/thy.2010.0313] [PMID: 21385074]
[78]
Sabio, G.; Davis, R.J. TNF and MAP kinase signalling pathways. Semin. Immunol., 2014, 26(3), 237-245.
[http://dx.doi.org/10.1016/j.smim.2014.02.009] [PMID: 24647229]
[79]
Simion, V.; Zhou, H.; Pierce, J.B.; Yang, D.; Haemmig, S.; Tesmenitsky, Y.; Sukhova, G.; Stone, P.H.; Libby, P.; Feinberg, M.W. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5(21), e140627.
[http://dx.doi.org/10.1172/jci.insight.140627] [PMID: 33021969]
[80]
Das, N.C.; Sen Gupta, P.S.; Biswal, S.; Patra, R.; Rana, M.K.; Mukherjee, S. In-silico evidences on filarial cystatin as a putative ligand of human TLR4. J. Biomol. Struct. Dyn., 2022, 40(19), 8808-8824.
[http://dx.doi.org/10.1080/07391102.2021.1918252] [PMID: 33955317]
[81]
Choudhury, A.; Das, N.C.; Patra, R.; Bhattacharya, M.; Ghosh, P.; Patra, B.C.; Mukherjee, S. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: An in silico approach. Future Virol., 2021, 16(4), 277-291.
[http://dx.doi.org/10.2217/fvl-2020-0342]