Structure-based Virtual Screening from Natural Products as Inhibitors of SARS-CoV-2 Spike Protein and ACE2 Receptor Binding and their Biological Evaluation In vitro

Page: [546 - 553] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: In the last years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 760 million infections and 6.9 million deaths. Currently, remains a public health problem with limited pharmacological treatments. Among the virus drug targets, the SARS-CoV-2 spike protein attracts the development of new anti-SARS-CoV-2 agents.

Objective: The aim of this work was to identify new compounds derived from natural products (BIOFACQUIM and Selleckchem databases) as potential inhibitors of the spike receptor binding domain (RBD)-ACE2 binding complex.

Methods: Molecular docking, molecular dynamics simulations, and ADME-Tox analysis were performed to screen and select the potential inhibitors. ELISA-based enzyme assay was done to confirm our predictive model.

Results: Twenty compounds were identified as potential binders of RBD of the spike protein. In vitro assay showed compound B-8 caused 48% inhibition at 50 μM, and their binding pattern exhibited interactions via hydrogen bonds with the key amino acid residues present on the RBD.

Conclusion: Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.

Graphical Abstract

[1]
Pekar, J.E.; Magee, A.; Parker, E.; Moshiri, N.; Izhikevich, K.; Havens, J.L.; Gangavarapu, K.; Malpica Serrano, L.M.; Crits-Christoph, A.; Matteson, N.L.; Zeller, M.; Levy, J.I.; Wang, J.C.; Hughes, S.; Lee, J.; Park, H.; Park, M.S.; Ching Zi Yan, K.; Lin, R.T.P.; Mat Isa, M.N.; Noor, Y.M.; Vasylyeva, T.I.; Garry, R.F.; Holmes, E.C.; Rambaut, A.; Suchard, M.A.; Andersen, K.G.; Worobey, M.; Wertheim, J.O. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science, 2022, 377(6609), 960-966.
[http://dx.doi.org/10.1126/science.abp8337] [PMID: 35881005]
[2]
World Health Organization (WHO). Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed November 6, 2022)
[3]
Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol., 2022, 20(5), 270-284.
[http://dx.doi.org/10.1038/s41579-022-00713-0] [PMID: 35354968]
[4]
The United States Food and Drug Administration (FDA). Coronavirus (COVID-19) | Drugs. Available from: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs (Accessed November 7, 2022)
[5]
Nhean, S.; Varela, M.E.; Nguyen, Y.N.; Juarez, A.; Huynh, T.; Udeh, D.; Tseng, A.L. COVID-19: A review of potential treatments (corticosteroids, remdesivir, tocilizumab, bamlanivimab/etesevimab, and casirivimab/imdevimab) and pharmacological considerations. J. Pharm. Pract., 2023, 36(2), 407-417.
[http://dx.doi.org/10.1177/08971900211048139] [PMID: 34597525]
[6]
Hashemian, S.M.R.; Pourhanifeh, M.H.; Hamblin, M.R.; Shahrzad, M.K.; Mirzaei, H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed. Pharmacother., 2022, 146, 112517.
[http://dx.doi.org/10.1016/j.biopha.2021.112517] [PMID: 34902743]
[7]
Markham, A. Baricitinib: First global approval. Drugs, 2017, 77(6), 697-704.
[http://dx.doi.org/10.1007/s40265-017-0723-3] [PMID: 28290136]
[8]
Selvaraj, V.; Finn, A.; Lal, A.; Khan, M.S.; Dapaah-Afriyie, K.; Carino, G.P. Baricitinib in hospitalised patients with COVID-19: A meta-analysis of randomised controlled trials. EClinicalMedicine, 2022, 49, 101489.
[http://dx.doi.org/10.1016/j.eclinm.2022.101489] [PMID: 35677732]
[9]
Amani, B.; Amani, B. Efficacy and safety of sotrovimab in patients with COVID‐19: A rapid review and meta‐analysis. Rev. Med. Virol., 2022, 32(6), e2402.
[http://dx.doi.org/10.1002/rmv.2402] [PMID: 36226323]
[10]
Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs. Clin. Infect. Dis., 2023, 76(1), 165-171.
[http://dx.doi.org/10.1093/cid/ciac180] [PMID: 35245942]
[11]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[12]
Day, C.J.; Bailly, B.; Guillon, P.; Dirr, L.; Jen, F.E.C.; Spillings, B.L.; Mak, J.; von Itzstein, M.; Haselhorst, T.; Jennings, M.P. Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block sARS-CoV-2–ACE2 receptor interactions. MBio, 2021, 12(2), e03681-20.
[http://dx.doi.org/10.1128/mBio.03681-20] [PMID: 33785634]
[13]
Sarkar, A.; Sen, D.; Sharma, A.; Muttineni, R.K.; Debnath, S. Structure-based virtual screening and molecular dynamics simulation to identify potential SARS-CoV-2 spike receptor inhibitors from natural compound database. Pharm. Chem. J., 2021, 55(5), 441-453.
[14]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[15]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[16]
Muhseen, Z.T.; Hameed, A.R.; Al-Hasani, H.M.H. Tahir ul Qamar, M.; Li, G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J. Mol. Liq., 2020, 320, 114493.
[http://dx.doi.org/10.1016/j.molliq.2020.114493] [PMID: 33041407]
[17]
Nag, A.; Paul, S.; Banerjee, R.; Kundu, R. In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Comput. Biol. Med., 2021, 137, 104818.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104818] [PMID: 34481181]
[18]
Lazniewski, M.; Dermawan, D.; Hidayat, S.; Muchtaridi, M.; Dawson, W.K.; Plewczynski, D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods, 2022, 203, 498-510.
[http://dx.doi.org/10.1016/j.ymeth.2022.02.004] [PMID: 35167916]
[19]
Patel, A.; Rajendran, M.; Shah, A.; Patel, H.; Pakala, S.B.; Karyala, P. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. J. Biomol. Struct. Dyn., 2022, 40(11), 5138-5146.
[http://dx.doi.org/10.1080/07391102.2020.1868338] [PMID: 33397223]
[20]
Güler, H.İ.; Ay Şal, F.; Can, Z.; Kara, Y.; Yildiz, O.; Beldüz, A.O.; Çanakçi, S.; Kolayli, S. Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by In silico and in vitro studies in terms of possible COVID-19 therapeutics. Turk. J. Biol., 2021, 45(SI-1), 530-548.
[http://dx.doi.org/10.3906/biy-2104-5] [PMID: 34803452]
[21]
Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model. Drug Des. Devel. Ther., 2021, 15, 1111-1133.
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[22]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[23]
Pilón-Jiménez, B.; Saldívar-González, F.; Díaz-Eufracio, B.; Medina-Franco, J. BIOFACQUIM: A Mexican compound database of natural products. Biomolecules, 2019, 9(1), 31.
[http://dx.doi.org/10.3390/biom9010031] [PMID: 30658522]
[24]
Flores-Padilla, E.A.; Juárez-Mercado, K.E.; Naveja, J.J.; Kim, T.D.; Alain Miranda-Quintana, R.; Medina-Franco, J.L. Chemoinformatic characterization of synthetic screening libraries focused on epigenetic targets. Mol. Inform., 2022, 41(6), 2100285.
[http://dx.doi.org/10.1002/minf.202100285] [PMID: 34931466]
[25]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[27]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[28]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[29]
González-Morales, L.D.; Moreno-Rodríguez, A.; Vázquez-Jiménez, L.K.; Delgado-Maldonado, T.; Juárez-Saldivar, A.; Ortiz-Pérez, E.; Paz-Gonzalez, A.D.; Lara-Ramírez, E.E.; Yépez-Mulia, L.; Meza, P.; Rivera, G. Triose phosphate isomerase structure-based virtual screening and in vitro biological activity of natural products as Leishmania mexicana inhibitors. Pharmaceutics, 2023, 15(8), 2046.
[30]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[31]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[32]
Wong, G.; He, S.; Siragam, V.; Bi, Y.; Mbikay, M.; Chretien, M.; Qiu, X. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol. Sin., 2017, 32(6), 545-547.
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[33]
Coutard, B.; Barral, K.; Lichière, J.; Selisko, B.; Martin, B.; Aouadi, W.; Lombardia, M.O.; Debart, F.; Vasseur, J.J.; Guillemot, J.C.; Canard, B.; Decroly, E. Zika virus methyltransferase: Structure and functions for drug design perspectives. J. Virol., 2017, 91(5), e02202-16.
[http://dx.doi.org/10.1128/JVI.02202-16] [PMID: 28031359]
[34]
Khor, P.Y.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W. Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur. J. Med. Chem., 2019, 183, 111704.
[http://dx.doi.org/10.1016/j.ejmech.2019.111704] [PMID: 31557608]
[35]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[36]
Marín-Palma, D.; Tabares-Guevara, J.H.; Zapata-Cardona, M.I.; Flórez-Álvarez, L.; Yepes, L.M.; Rugeles, M.T.; Zapata-Builes, W.; Hernandez, J.C.; Taborda, N.A. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules, 2021, 26(22), 6900.
[http://dx.doi.org/10.3390/molecules26226900] [PMID: 34833991]
[37]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Negm, W.A.; Alexiou, A.; Batiha, G.E.S. Ursolic acid and SARS-CoV-2 infection: A new horizon and perspective. Inflammopharmacology, 2022, 30(5), 1493-1501.
[http://dx.doi.org/10.1007/s10787-022-01038-3] [PMID: 35922738]
[38]
Subbaiyan, A.; Ravichandran, K.; Singh, S.V.; Sankar, M.; Thomas, P.; Dhama, K.; Malik, Y.S.; Singh, R.K.; Chaudhuri, P. In silico molecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J. Pure Appl. Microbiol., 2020, 14(Suppl. 1), 989-998.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[39]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J. Biomol. Struct. Dyn., 2022, 40(1), 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[40]
Klecker, C.; Nair, L.S. Matrix chemistry controlling stem cell behavior. In: Biology and Engineering of Stem Cell Niches; Elsevier: Cambridge, MA, USA, 2017; pp. 195-213.
[http://dx.doi.org/10.1016/B978-0-12-802734-9.00013-5]
[41]
Murali, K.; Machado, L.A.; Carvalho, R.L.; Pedrosa, L.F.; Mukherjee, R.; Da Silva Júnior, E.N.; Maiti, D. Decoding directing groups and their pivotal role in c−H activation. Chemistry, 2021, 27(49), 12453-12508.
[http://dx.doi.org/10.1002/chem.202101004] [PMID: 34038596]
[42]
Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Profiles of Drug Substances, Excipients and Related Methodology; Elsevier, 2019, 44, pp. 239-266.
[43]
Kuo, Y.H.; Huang, T.H.; Wang, J.H.; Chen, Y.Y.; Tsai, M.C.; Chen, Y.H.; Lu, S.N.; Hu, T.H.; Chen, C.H.; Hung, C.H. Well-controlled viremia predicts the outcome of hepatocellular carcinoma in chronic viral hepatitis patients treated with sorafenib. Cancers, 2022, 14(16), 3971.
[http://dx.doi.org/10.3390/cancers14163971] [PMID: 36010961]
[44]
Awad, I.E.; Abu-Saleh, A.A.A.A.; Sharma, S.; Yadav, A.; Poirier, R.A. High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. J. Biomol. Struct. Dyn., 2022, 40(5), 2099-2112.
[http://dx.doi.org/10.1080/07391102.2020.1835721] [PMID: 33103586]