Letters in Drug Design & Discovery

Author(s): Abhijit Debnath and Rupa Mazumder*

DOI: 10.2174/0115701808273043231130100833

Identification of Novel CDK 4/6 Inhibitors by High-throughput Virtual Screening

Page: [3229 - 3246] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: CDK4/6 plays a crucial role in regulating cell proliferation, and inhibiting this kinase can effectively prevent the initiation of cell growth and division. However, current FDAapproved CDK4/6 inhibitors have limitations such as poor bioavailability, adverse effects, high cost, and limited accessibility. Thus, this research aimed to discover novel CDK4/6 inhibitors to overcome the challenges associated with FDA-approved inhibitors.

Methods: To identify potential CDK4/6 inhibitors, we have performed structure-based virtual screening. Chem-space and Mcule databases have been screened, followed by a series of filtering steps. These steps included assessing drug-likeness, PAINS alert, synthetic accessibility scores, ADMET properties, consensus molecular docking, and performing molecular dynamics simulations.

Results: Four new compounds (CSC089414133, CSC091186116, CSC096023304, CSC101755872) have been identified as potential CDK4/6 inhibitors. These compounds exhibited strong binding affinity with CDK4/6, possessed drug-like features, showed no PAINS alert, had a low synthetic accessibility score, demonstrated effective ADMET properties, were non-toxic, and exhibited high stability.

Conclusion: Inhibiting CDK4/6 with the identified compounds may lead to reduced cell proliferation and the promotion of cancer cell death.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Nebenfuehr, S.; Kollmann, K.; Sexl, V. The role of CDK6 in cancer. Int. J. Cancer, 2020, 147(11), 2988-2995.
[http://dx.doi.org/10.1002/ijc.33054] [PMID: 32406095]
[4]
Tadesse, S.; Yu, M.; Kumarasiri, M.; Le, B.T.; Wang, S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle, 2015, 14(20), 3220-3230.
[http://dx.doi.org/10.1080/15384101.2015.1084445] [PMID: 26315616]
[5]
Wood, D.J.; Endicott, J.A. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol., 2018, 8(9), 180112.
[http://dx.doi.org/10.1098/rsob.180112] [PMID: 30185601]
[6]
Whittaker, S.R.; Mallinger, A.; Workman, P.; Clarke, P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther., 2017, 173, 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[7]
Bockstaele, L.; Bisteau, X.; Paternot, S.; Roger, P.P. Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol. Cell. Biol., 2009, 29(15), 4188-4200.
[http://dx.doi.org/10.1128/MCB.01823-08] [PMID: 19487459]
[8]
Rana, S.; Bendjennat, M.; Kour, S.; King, H.M.; Kizhake, S.; Zahid, M.; Natarajan, A. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg. Med. Chem. Lett., 2019, 29(11), 1375-1379.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.035] [PMID: 30935795]
[9]
Finn, R.S.; Aleshin, A.; Slamon, D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res., 2016, 18(1), 17.
[http://dx.doi.org/10.1186/s13058-015-0661-5] [PMID: 26857361]
[10]
Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol., 2016, 12(9), 741-747.
[http://dx.doi.org/10.1038/nchembio.2134] [PMID: 27454933]
[11]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[12]
Verba, K.A.; Wang, R.Y-R.; Arakawa, A.; Liu, Y.; Shirouzu, M.; Yokoyama, S. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Sci., 2016, 352(6293), 1542-1547.
[http://dx.doi.org/10.1126/science.aaf5023]
[13]
Jaime-Garza, M.; Nowotny, C.A.; Coutandin, D.; Wang, F.; Tabios, M.; Agard, D.A. Hsp90 provides a platform for kinase dephosphorylation by PP5. Nat. Commun., 2023, 14(1), 2197.
[http://dx.doi.org/10.1038/s41467-023-37659-7] [PMID: 37069154]
[14]
Singh, T.; Biswas, D.; Jayaram, B. AADS-an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model., 2011, 51(10), 2515-2527.
[http://dx.doi.org/10.1021/ci200193z] [PMID: 21877713]
[15]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[16]
Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20-a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model., 2020, 60(12), 6065-6073.
[http://dx.doi.org/10.1021/acs.jcim.0c00675] [PMID: 33118813]
[17]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(D1), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[18]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[19]
Li, H.; Leung, K.S.; Wong, M.H. Idock: A multithreaded virtual screening tool for flexible ligand docking. 2012 IEEE Symp Comput Intell Comput Biol CIBCB 2012, 2012, pp. 77-84.
[http://dx.doi.org/10.1109/CIBCB.2012.6217214]
[20]
Feinstein, W.P.; Brylinski, M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform., 2015, 7(1), 18.
[http://dx.doi.org/10.1186/s13321-015-0067-5] [PMID: 26082804]
[21]
Landrum, G. Landrum G. RDKit: Open-Source Cheminformatics Software. 2016. Available from: https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
[22]
McKinney, W. others. Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, 2010, pp. 51-6.
[23]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46(1-3), 3-26.
[24]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[25]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[26]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[27]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[28]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform., 2009, 1(1), 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]
[29]
Fukunishi, Y.; Kurosawa, T.; Mikami, Y.; Nakamura, H. Prediction of synthetic accessibility based on commercially available compound databases. J. Chem. Inf. Model., 2014, 54(12), 3259-3267.
[http://dx.doi.org/10.1021/ci500568d] [PMID: 25420000]
[30]
Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B, 2022, 12(7), 3049-3062.
[http://dx.doi.org/10.1016/j.apsb.2022.02.002] [PMID: 35865092]
[31]
Seyhan, A.A. Lost in translation: the valley of death across preclinical and clinical divide-identification of problems and overcoming obstacles. Transl. Med. Commun., 2019, 4(1), 18.
[http://dx.doi.org/10.1186/s41231-019-0050-7]
[32]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[33]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[34]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[35]
Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl.), W270-W277.
[http://dx.doi.org/10.1093/nar/gkr366] [PMID: 21624888]
[36]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. 2009. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jcc.21334
[37]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[38]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[39]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[40]
Debnath, A.; Mazumder, R.; Mazumder, A.; Singh, R.; Srivastava, S. In silico identification of HDAC inhibitors for multiple myeloma: A structure-based virtual screening, drug likeness, ADMET profiling, molecular docking, and molecular dynamics simulation study. Lett. Drug Des. Discov., 2023, 20, 1.
[http://dx.doi.org/10.2174/1570180820666230125102954]
[41]
Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep., 2019, 9(1), 5142.
[http://dx.doi.org/10.1038/s41598-019-41594-3] [PMID: 30914702]
[42]
Houston, D.R.; Walkinshaw, M.D. Consensus docking: improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model., 2013, 53(2), 384-390.
[http://dx.doi.org/10.1021/ci300399w] [PMID: 23351099]
[43]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[44]
Brooks, B.R.; Brooks, C.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B. CHARMM: Molecular dynamics simulation package. J. Comput. Chem., 2009, 30(10), 1545-1614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[45]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[46]
Pillai, G.G. Jupyter Notebook for MD using Gromacs. In: zenodo; , 2020.
[47]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[48]
Bondi, A van der Waals Volumes and Radii. J. Phys. Chem., 1964, 68(3), 441-451.
[49]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[50]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[51]
Poli, G.; Tuccinardi, T. Consensus docking in drug discovery. Curr. Bioact. Compd., 2020, 16(3), 182-190.
[http://dx.doi.org/10.2174/1573407214666181023114820]
[52]
Marsh, J.A.; Teichmann, S.A. Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure, 2011, 19(6), 859-867.
[http://dx.doi.org/10.1016/j.str.2011.03.010] [PMID: 21645856]
[53]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[54]
Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10037-10041.
[http://dx.doi.org/10.1073/pnas.181342398] [PMID: 11517324]
[55]
Wagoner, J.A.; Baker, N.A. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA, 2006, 103(22), 8331-8336.
[http://dx.doi.org/10.1073/pnas.0600118103] [PMID: 16709675]
[56]
Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M. The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem., 1995, 16(3), 273-284.
[http://dx.doi.org/10.1002/jcc.540160303]
[57]
Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer, 2021, 148(3), 601-608.
[http://dx.doi.org/10.1002/ijc.33232] [PMID: 32706917]
[58]
Bhattacharya, A.; Sen Guha, P.; Chowdhury, N.; Bagchi, A.; Guha, D. Virtual screening and molecular docking of flavone derivatives as a potential anticancer drug in the presence of Dexamethasone. Biointerface Res. Appl. Chem., 2023, 13(3), 1-19.
[59]
Baig, M.H.; Yousuf, M.; Khan, M.I.; Khan, I.; Ahmad, I.; Alshahrani, M.Y.; Hassan, M.I.; Dong, J.J. Investigating the mechanism of inhibition of cyclin-dependent kinase 6 inhibitory potential by Selonsertib: Newer insights into drug repurposing. Front. Oncol., 2022, 12(May), 865454.
[http://dx.doi.org/10.3389/fonc.2022.865454] [PMID: 35720007]
[60]
Chukwuemeka, P.O.; Umar, H.I.; Iwaloye, O.; Oretade, O.M.; Olowosoke, C.B.; Oretade, O.J.; Elabiyi, M.O. Predictive hybrid paradigm for cytotoxic activity of 1,3,4-thiadiazole derivatives as CDK6 inhibitors against human (MCF-7) breast cancer cell line and its structural modifications: rational for novel cancer therapeutics. J. Biomol. Struct. Dyn., 2022, 40(18), 8518-8537.
[http://dx.doi.org/10.1080/07391102.2021.1913231] [PMID: 33890551]
[61]
Nusantoro, Y.R.; Fadlan, A. In silico studies of isatinyl-2-aminobenzoylhydrazone transition metal complexes against cyclin-dependent kinase 6 (CDK6). Pharm Reports, 2021, 1(1), 4.
[62]
Luo, X.; Zhao, Y.; Tang, P.; Du, X.; Li, F.; Wang, Q.; Li, R.; He, J. Discovery of new small-molecule cyclin-dependent kinase 6 inhibitors through computational approaches. Mol. Divers., 2021, 25(1), 367-382.
[http://dx.doi.org/10.1007/s11030-020-10120-3] [PMID: 32770459]
[63]
Susanti, N.M.P.; Damayanti, S.; Kartasasmita, R.E.; Tjahjono, D.H. A search for cyclin-dependent kinase 4/6 Inhibitors by pharmacophore-based virtual screening, molecular docking, and molecular dynamic simulations. Int. J. Mol. Sci., 2021, 22(24), 13423.
[http://dx.doi.org/10.3390/ijms222413423] [PMID: 34948218]
[64]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One, 2021, 16(7), e0254035.
[http://dx.doi.org/10.1371/journal.pone.0254035]
[65]
Pinanti, H.N.; Nafisah, W.; Christina, Y.I.; Rifa’i, M.; Widodo; Djati, M.S. Biflavonoid compounds from Selaginella doederleinii Hieron as anticancer agents of hormone receptor-positive (HR+) breast cancer based on in silico study. IOP Conf. Ser. Earth Environ. Sci., 2021, 743(1), 012028.
[http://dx.doi.org/10.1088/1755-1315/743/1/012028]
[66]
Yousuf, M.; Khan, P.; Shamsi, A.; Shahbaaz, M.; Hasan, G.M.; Haque, Q.M.R.; Christoffels, A.; Islam, A.; Hassan, M.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 2020, 5(42), 27480-27491.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[67]
Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Rizwanul Haque, Q.M.; Hassan, M.I. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int. J. Mol. Sci., 2020, 21(10), 3526.
[http://dx.doi.org/10.3390/ijms21103526] [PMID: 32429317]
[68]
Ullah, A.; Prottoy, N.I.; Araf, Y.; Hossain, S.; Sarkar, B.; Saha, A. Molecular docking and pharmacological property analysis of phytochemicals from <i>Clitoria ternatea</i> as potent inhibitors of cell cycle checkpoint proteins in the Cyclin/CDK pathway in cancer cells. Comput. Mol. Biosci., 2019, 9(3), 81-94.
[http://dx.doi.org/10.4236/cmb.2019.93007]
[69]
Basati, G.; Saffari-Chaleshtori, J.; Abbaszadeh, S.; Asadi-Samani, M.; Ashrafi-Dehkordi, K. Molecular dynamics mechanisms of the inhibitory effects of abemaciclib, hymenialdisine, and indirubin on CDK-6. Curr. Drug Res. Rev., 2019, 11(2), 135-141.
[http://dx.doi.org/10.2174/2589977511666191018180001] [PMID: 31875784]
[70]
Sharma, V.; Sharma, P.C.; Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents; Adv Chem, 2016, pp. 1-9.
[71]
Cho, Y.S.; Angove, H.; Brain, C.; Chen, C.H.; Cheng, H.; Cheng, R. Fragment-based discovery of 7-azabenzimidazoles as potent, highly selective, and orally active CDK4/6 inhibitors. ACS Med. Chem. Lett., 2012, 3(6), 445-449.
[72]
Stork, C.; Kirchmair, J. PAIN(S) relievers for medicinal chemists: How computational methods can assist in hit evaluation. Future Med. Chem., 2018, 10(13), 1533-1535.
[http://dx.doi.org/10.4155/fmc-2018-0116] [PMID: 29956552]
[73]
Skoraczyński, G.; Kitlas, M.; Miasojedow, B.; Gambin, A. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning. J. Cheminform., 2023, 15(1), 6.
[http://dx.doi.org/10.1186/s13321-023-00678-z] [PMID: 36641473]
[74]
Yu, J.; Wang, J.; Zhao, H.; Gao, J.; Kang, Y.; Cao, D.; Wang, Z.; Hou, T. Organic compound synthetic accessibility prediction based on the graph attention mechanism. J. Chem. Inf. Model., 2022, 62(12), 2973-2986.
[http://dx.doi.org/10.1021/acs.jcim.2c00038] [PMID: 35675668]
[75]
Thakkar, A.; Chadimová, V.; Bjerrum, E.J.; Engkvist, O.; Reymond, J.L. Retrosynthetic accessibility score (RAscore)-rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem. Sci., 2021, 12(9), 3339-3349.
[http://dx.doi.org/10.1039/D0SC05401A] [PMID: 34164104]
[76]
Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.Q. Pharmacogenomics of drug metabolizing enzymes and transporters: Relevance to precision medicine. Genomics Proteomics Bioinformatics, 2016, 14(5), 298-313.
[http://dx.doi.org/10.1016/j.gpb.2016.03.008] [PMID: 27729266]
[77]
Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. Trials Commun., 2018, 11, 156-164.
[http://dx.doi.org/10.1016/j.conctc.2018.08.001] [PMID: 30112460]