Essential Structural Profile of Novel Adenosine Derivatives as Antiplatelet Aggregation Inhibitors based on 3D-QSAR Analysis

Page: [3115 - 3124] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aims: In this research, 3D-QSAR evaluation on a set of fresh purinoid compounds that we produced was conducted. This analysis aims to illustrate the correlation between the structure of purine and its ability to prevent platelet aggregation. Our findings could pave the way to discovering novel antithrombotic medications.

Background: The incidence of cardiovascular disease triggered by the clumping of platelets poses a significant danger to human health. Purine derivatives are important molecules with antiplatelet aggregation activity.

Objective: The objectives of this research are to establish the correlation between the structure of purine and its ability to prevent platelet aggregation. Such a correlation could aid in the development of innovative antithrombotic medications.

Methods: In this study, 3D-QSAR investigation on a collection of 75 new purine derivatives, which we synthesized, was conducted, utilizing Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA).

Results: Significant correlation coefficients (CoMFA, q2= 0.843, r2= 0.930, F value= 266.755, SEE= 0.165; CoMSIA, q2= 0.869, r2= 0.918, F value= 222.571, SEE= 0.179) were obtained, and assessed the model's predictive capabilities by validating it with the test set.

Conclusion: Our findings indicate that the introduction of an appropriately sized structure at position 2 of the compound yields significant benefits. Conversely, the attachment of an excessively large group is detrimental. Direct attachment of a bulky substituent at C-6 of the compound is not feasible, and its activity increases when the structure with low electron cloud density is added. Moreover, the presence of a voluminous functional group at the 5' position of the compound is advantageous, and its activity will be further increased by the presence of hydrogen bond receptors in this region. These discoveries furnish significant comprehension for the formation of innovative structures with heightened efficacy.

[1]
Michelson, A.D. Antiplatelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov., 2010, 9(2), 154-169.
[http://dx.doi.org/10.1038/nrd2957] [PMID: 20118963]
[2]
Ghaffar, A.; Reddy, K.S.; Singhi, M. Burden of non-communicable diseases in South Asia: Authors’ reply. BMJ, 2004, 328(7454), 1499.3.
[http://dx.doi.org/10.1136/bmj.328.7454.1499-b]
[3]
Karthikeyan, G.; Xavier, D.; Prabhakaran, D.; Pais, P. Perspectives on the management of coronary artery disease in India. Heart, 2007, 93(11), 1334-1338.
[4]
Lip, G.Y.H.; Felmeden, D.C. Antiplatelet agents and anticoagulants for hypertension. Cochrane Database Syst. Rev., 2004, (3), CD003186.
[PMID: 15266473]
[5]
Song, J.C.; Wang, G.; Zhang, W.; Zhang, Y.; Li, W.Q.; Zhou, Z. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil. Med. Res., 2020, 7(1), 19.
[6]
Schols, A.M.R.; Schreuder, F.H.B.M.; van Raak, E.P.M.; Schreuder, T.H.C.M.L.; Rooyer, F.A.; van Oostenbrugge, R.J.; Staals, J. Incidence of oral anticoagulant-associated intracerebral hemorrhage in the Netherlands. Stroke, 2014, 45(1), 268-270.
[http://dx.doi.org/10.1161/STROKEAHA.113.003003] [PMID: 24203841]
[7]
Yaghi, S.; Willey, J.Z.; Cucchiara, B.; Goldstein, J.N.; Gonzales, N.R.; Khatri, P.; Kim, L.J.; Mayer, S.A.; Sheth, K.N.; Schwamm, L.H. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2017, 48(12), e343-e361.
[http://dx.doi.org/10.1161/STR.0000000000000152] [PMID: 29097489]
[8]
Chinese Society of Neurology, Chinese Stroke Society. Consensus on diagnosis and treatment of hemorrhagic transformation after acute ischemic stroke in China 2019. J. Chin J Neurol, 2019, 52(4), 252-265.
[9]
Herbert, J.M.; Savi, P. P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin. Vasc. Med., 2003, 3(2), 113-122.
[http://dx.doi.org/10.1055/s-2003-40669] [PMID: 15199474]
[10]
Cattaneo, M.; Lecchi, A.; Lombardi, R.; Gachet, C.; Zighetti, M.L. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler. Thromb. Vasc. Biol., 2000, 20(11), E101-E106.
[http://dx.doi.org/10.1161/01.ATV.20.11.e101] [PMID: 11073862]
[11]
Nakkam, N.; Tiamkao, S.; Kanjanawart, S.; Phunikhom, K.; Tiamkao, S.; Vannaprasaht, S.; Tassaneeyakul, W.; Tassaneeyakul, W. Comparative pharmacodynamic effects of two clopidogrel formulations under steady-state conditions in healthy Thai volunteers. Int. J. Clin. Pharmacol. Ther., 2017, 55(2), 177-185.
[http://dx.doi.org/10.5414/CP202723] [PMID: 27936524]
[12]
Jakubowski, J.A.; Winters, K.J.; Naganuma, H.; Wallentin, L. Prasugrel: a novel thienopyridine antiplatelet agent. A review of preclinical and clinical studies and the mechanistic basis for its distinct antiplatelet profile. Cardiovasc. Drug Rev., 2007, 25(4), 357-374.
[http://dx.doi.org/10.1111/j.1527-3466.2007.00027.x] [PMID: 18078435]
[13]
Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; Mahaffey, K.W.; Scirica, B.M.; Skene, A.; Steg, P.G.; Storey, R.F.; Harrington, R.A.; Freij, A.; Thorsén, M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2009, 361(11), 1045-1057.
[http://dx.doi.org/10.1056/NEJMoa0904327] [PMID: 19717846]
[14]
Feng, K.Y.; Mahaffey, K.W. Cangrelor in clinical use. Future Cardiol., 2020, 16(2), 89-102.
[http://dx.doi.org/10.2217/fca-2019-0095] [PMID: 32067479]
[15]
Zhang, S.; Hu, L.; Du, H.; Guo, Y.; Zhang, Y.; Niu, H.; Jin, J.; Zhang, J.; Liu, J.; Zhang, X.; Kunapuli, S.; Ding, Z. BF0801, a novel adenine derivative, inhibits platelet activation via phosphodiesterase inhibition and P2Y12 antagonism. Thromb. Haemost., 2010, 104(10), 845-857.
[http://dx.doi.org/10.1160/TH10-05-0285] [PMID: 20806121]
[16]
Hagihara, K.; Kazui, M.; Ikenaga, H.; Nanba, T.; Fusegawa, K.; Takahashi, M.; Kurihara, A.; Okazaki, O.; Farid, N.A.; Ikeda, T. Comparison of formation of thiolactones and active metabolites of prasugrel and clopidogrel in rats and dogs. Xenobiotica, 2009, 39(3), 218-226.
[http://dx.doi.org/10.1080/00498250802650077] [PMID: 19280520]
[17]
Mangiacapra, F.; Trana, C.; Sarno, G.; Davidavicius, G.; Protasiewicz, M.; Muller, O.; Ntalianis, A.; Misonis, N.; Van Vlem, B.; Heyndrickx, G.R.; De Bruyne, B. Translesional pressure gradients to predict blood pressure response after renal artery stenting in patients with renovascular hypertension. Circ. Cardiovasc. Interv., 2010, 3(6), 537-542.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.957704] [PMID: 21078879]
[18]
Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; Riesmeyer, J.; Weerakkody, G.; Gibson, C.M.; Antman, E.M. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2007, 357(20), 2001-2015.
[http://dx.doi.org/10.1056/NEJMoa0706482] [PMID: 17982182]
[19]
Li, S.; Ren, Y.; He, Q.; Wei, Y.; Du, H. Synthesis of novel purine derivatives: Antiplatelet aggregation activity evaluation and 3D-QSAR analysis. J. Heterocycl. Chem., 2022, 59(11), 2016-2024.
[http://dx.doi.org/10.1002/jhet.4539]
[20]
Qu, R.; Liu, H.; Feng, M.; Yang, X.; Wang, Z. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data, 2012, 57(9), 2442-2455.
[http://dx.doi.org/10.1021/je300407g]
[21]
Zeng, X.; Qu, R.; Feng, M.; Chen, J.; Wang, L.; Wang, Z. Photodegradation of Polyfluorinated Dibenzo- p -Dioxins in Organic Solvents: Experimental and Theoretical Studies. Environ. Sci. Technol., 2016, 50(15), 8128-8134.
[http://dx.doi.org/10.1021/acs.est.6b02682] [PMID: 27380414]
[22]
Tong, J.; Yang, W.; Shan, L.; Qing, S. 3D-QSAR and docking studies of 1,3.4-thiazolidlinone derivativesusing R-group search and surflex-dock. J. Chin J Struct Chem, 2019, 38(3), 464-475.
[23]
Hui, F.; Xihua, D.; Yan, C.; Changjun, F. 3D-QSAR models of anti-tumor activity for histone deacetylaseinhibitors containing dihydropyridin-2-one. J. Chin J Struct Chem, 2020, 39(5), 855-862.
[24]
Xu, Y.; He, Z.; Liu, H.; Chen, Y.; Gao, Y.; Zhang, S.; Wang, M.; Lu, X.; Wang, C.; Zhao, Z.; Liu, Y.; Zhao, J.; Yu, Y.; Yang, M. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno[3,2- b]pyrrole-5-carboxamide derivatives as LSD1 inhibitors. RSC Advances, 2020, 10(12), 6927-6943.
[http://dx.doi.org/10.1039/C9RA10085G] [PMID: 35493862]
[25]
Li, X.; Zhou, H.; Mo, X.; Zhang, L.; Li, J. In silico study of febuxostat analogs as inhibitors of xanthine oxidoreductase: A combined 3D-QSAR and molecular docking study. J. Mol. Struct., 2019, 1181, 428-435.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.017]
[26]
Arakawa, M.; Hasegawa, K.; Funatsu, K. The recent trend in QSAR modeling - variable selection and 3D-QSAR methods. Curr. Computeraided Drug Des., 2007, 3(4), 254-262.
[http://dx.doi.org/10.2174/157340907782799417]
[27]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[28]
(a) Klebe, G.; Abraham, U.; Mietzner, T.K.; AbrahaG, G.; Mietzner, U.; Molecular, T. Similarity indices in a comparative analysis(CoMSIA) of drug molecules to correlate and predict their biological potency. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010] [PMID: 7990113];
(b)) St. Louis, M. SYBYL-X 1.3, Molecular Modeling Software; Tripos Associates, 2011.
[29]
Li, S.; Bao, X.; Lu, C.; Ren, C.; Liu, G.; Du, H. Essential structural profile of novel adenosine derivatives as antiplatelet aggregation inhibitors based on 3D-QSAr analysis using CoMFA, CoMSIA, and SOMFA. Russ. J. Bioorganic Chem., 2020, 46(3), 448-457.
[http://dx.doi.org/10.1134/S1068162020030103]
[30]
Li, S.; Zhou, C.; Yu, M.; He, Q.; Du, H. Synthesis, anti-platelet aggregation activity evaluation and structure–activity relationships of a series of novel purine derivatives. J. Heterocycl. Chem., 2020, 57(7), 2889-2903.
[http://dx.doi.org/10.1002/jhet.3997]
[31]
Ma, J.; Zhang, H.; Zhang, X.; Lei, M. 3D-QSAR studies of D3R antagonists and 5-HT1AR agonists. J. Mol. Graph. Model., 2019, 86, 132-141.
[http://dx.doi.org/10.1016/j.jmgm.2018.10.013] [PMID: 30359859]