Letters in Drug Design & Discovery

Author(s): Jing Zhong* and Liubing Lan*

DOI: 10.2174/0115701808267120231122070418

Exploring the Molecular Mechanisms of Astragalus membranaceus in Treating Pre-eclampsia using Network Pharmacology and Molecular Docking

Page: [1582 - 1592] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Pre-eclampsia (PE) is a pregnancy-related complication that has a global prevalence of 3-5% among pregnant women.

Objective: The objective of this study is to examine the molecular mechanism underlying the therapeutic effects of Astragalus membranaceus (AE) in the treatment of PE through the application of network pharmacology and molecular docking.

Methods: The databases, including TCMSP, Uniprot, Genecards, STRING, and DAVID, and software, including jvenn, Cytoscape, and AutoDock Vina, were used to do the analysis.

Results: Sixteen AE-related active ingredients were screened, involving 127 targets, among which the main active ingredients included kaempferol, quercetin, and jaranol, etc. The primary targets of AE for the management of PE encompassed AKT1, CASP3, EGFR, IL1B, IL6, MMP9, PTGS2, TNF, TP53, and VEGFA. The outcomes of the enrichment analysis revealed that AE was predominantly implicated in pathways such as the IL-17 signaling pathway and PI3K-Akt signaling pathway, among others. The molecular docking findings confirmed that the principal active constituents exhibit favorable binding to their central targets. Specifically, the molecular docking results evinced that the primary active ingredients evince robust binding activity towards the core targets.

Conclusion: AE has the potential to act synergistically in the management of PE by engaging multiple components, targets, and pathways, thereby establishing a basis for further exploration of its material basis and mechanism of action.

Graphical Abstract

[1]
Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet, 2021, 398(10297), 341-354.
[http://dx.doi.org/10.1016/S0140-6736(20)32335-7] [PMID: 34051884]
[2]
Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-eclampsia rates in the United States, 1980-2010: Age-period-cohort analysis. BMJ, 2013, 347(nov07 15), f6564.
[http://dx.doi.org/10.1136/bmj.f6564] [PMID: 24201165]
[3]
Gao, X.; Wang, J.; Shi, J.; Sun, Q.; Jia, N.; Li, H. The efficacy mechanism of epigallocatechin gallate against pre-eclampsia based on network pharmacology and molecular docking. Reprod. Sci., 2022, 29(6), 1859-1873.
[http://dx.doi.org/10.1007/s43032-022-00894-2] [PMID: 35211881]
[4]
Guo, M.F.; Dai, Y.J.; Gao, J.R.; Chen, P.J. Uncovering the mechanism of Astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology. J. Diabetes Res., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/5947304] [PMID: 32215271]
[5]
Auyeung, K.K.; Han, Q.B.; Ko, J.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med., 2016, 44(1), 1-22.
[http://dx.doi.org/10.1142/S0192415X16500014] [PMID: 26916911]
[6]
Chu, X.D.; Zhang, Y.R.; Lin, Z.B.; Zhao, Z.; Huangfu, S.C.; Qiu, S.H.; Guo, Y.G.; Ding, H.; Huang, T.; Chu, X.L.; Pan, J.H.; Pan, Y.L. A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer. Transl. Cancer Res., 2021, 10(2), 681-693.
[http://dx.doi.org/10.21037/tcr-20-2596] [PMID: 35116401]
[7]
Lin, Z.; Zhang, Z.; Ye, X.; Zhu, M.; Li, Z.; Chen, Y.; Huang, S. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS One, 2022, 17(5), e0263291.
[http://dx.doi.org/10.1371/journal.pone.0263291] [PMID: 35594510]
[8]
Tao, Y.; Huang, X.F.; Wang, J.; Kang, M.; Wang, L.; Xian, S. Exploring molecular mechanism of huangqi in treating heart failure using network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-17.
[http://dx.doi.org/10.1155/2020/6473745] [PMID: 32382301]
[9]
Shao, Y.; He, J.; Zhang, X.; Xie, P.; Lian, H.; Zhang, M. Mechanism of Astragali Radix for the treatment of osteoarthritis: A study based on network pharmacology and molecular docking. Medicine , 2022, 101(28), e29885.
[http://dx.doi.org/10.1097/MD.0000000000029885] [PMID: 35839041]
[10]
Zhou, Y.; Chu, Y.; Shi, J.; Hu, Y. Analysis of the molecular mechanism of Huangqi herb treating COVID-19 with myocardial injury by pharmacological tools, programming software and molecular docking. Comb. Chem. High Throughput Screen., 2022.
[PMID: 35838222]
[11]
Lan, S.; Duan, J.; Zeng, N.; Yu, B.; Yang, X.; Ning, H.; Huang, Y.; Rao, Y. Network pharmacology-based screening of the active ingredients and mechanisms of Huangqi against aging. Medicine , 2021, 100(17), e25660.
[http://dx.doi.org/10.1097/MD.0000000000025660] [PMID: 33907130]
[12]
Zhang, J.; Liang, R.; Wang, L.; Yang, B. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. J. Ethnopharmacol., 2019, 229, 104-114.
[http://dx.doi.org/10.1016/j.jep.2018.10.004] [PMID: 30312741]
[13]
Song, W.; Ni, S.; Fu, Y.; Wang, Y. Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: A network pharmacology study. Sci. Rep., 2018, 8(1), 17362.
[http://dx.doi.org/10.1038/s41598-018-35791-9] [PMID: 30478434]
[14]
Chen, B; Jin, X; Wang, H; Zhou, Q; Li, G; Lu, X Network pharmacology, integrated bioinformatics, and molecular docking reveals the anti-ovarian cancer molecular mechanisms of cinnamon (Cinnamomum cassia (L.) J. Presl). Nat. Prod. Commun., 2022, 17, 1934578X2211191.
[15]
Shi, J.; Wang, J.; Jia, N.; Sun, Q. A network pharmacology study on mechanism of resveratrol in treating preeclampsia via regulation of AGE-RAGE and HIF-1 signalling pathways. Front. Endocrinol., 2023, 13, 1044775.
[http://dx.doi.org/10.3389/fendo.2022.1044775] [PMID: 36686428]
[16]
Li, J.; Liu, X.; Li, J.; Han, D.; Li, Y.; Ge, P. Mechanism of andrographis paniculata on lung cancer by network pharmacology and molecular docking. Technol. Health Care, 2023, 31(4), 1407-1427.
[http://dx.doi.org/10.3233/THC-220698] [PMID: 36641698]
[17]
Shuangkou, C.; Xiaoqing, T.; Si, T.; Mingxin, X.; Fengming, R.; Xi, X. The anti-inflammatory mechanism of tauroursodeoxycholic acid based on network pharmacology and molecular docking. Lett. Drug Des. Discov., 2023, 20(9), 1360-1371.
[http://dx.doi.org/10.2174/1570180819666220909100913]
[18]
Zhu, L.; Lin, Z.; Lu, L. Molecular mechanism of qingchang suppository in the treatment of ulcerative colitis based on network pharmacology. Lett. Drug Des. Discov., 2023, 20(1), 71-76.
[http://dx.doi.org/10.2174/1570180819666220509070003]
[19]
Li, D.B.; Lyu, G.; Lyu, J.; Niu, H.; Wang, X. Cloning and characterization of a wheat ring finger gene tarha2b whose expression is upregulated by aba treatment. Appl. Ecol. Environ. Res., 2019, 17(4), 7495-7510.
[http://dx.doi.org/10.15666/aeer/1704_74957510]
[20]
Lyu, G.; Li, D.; Xiong, H.; Xiao, L.; Tong, J.; Ning, C.; Wang, P.; Li, S. Quantitative proteomic analyses identify STO/BBX24 -related proteins induced by UV-B. Int. J. Mol. Sci., 2020, 21(7), 2496.
[http://dx.doi.org/10.3390/ijms21072496] [PMID: 32260266]
[21]
Li, D.; Lyu, G.; Niu, G.; Wang, X.; Yin, J. Interaction network of TaRHA2b of wheat (Triticum aestivum L.), based on high-throughput yeast two-hybrid screening. Appl. Ecol. Environ. Res., 2019, 13105-13124.
[22]
Yang, Y.; Gu, X.; Li, Z.; Zheng, C.; Wang, Z.; Zhou, M.; Chen, Z.; Li, M.; Li, D.; Xiang, J. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway. Aging , 2021, 13(19), 23262-23283.
[http://dx.doi.org/10.18632/aging.203618] [PMID: 34642262]
[23]
Chen, J.; Tang, H.; Li, T.; Jiang, K.; Zhong, H.; Wu, Y.; He, J.; Li, D.; Li, M.; Cai, X. Comprehensive analysis of the expression, prognosis, and biological significance of OVOLs in breast cancer. Int. J. Gen. Med., 2021, 14, 3951-3960.
[http://dx.doi.org/10.2147/IJGM.S326402] [PMID: 34345183]
[24]
Wang, Q.; Du, L.; Hong, J.; Chen, Z.; Liu, H.; Li, S.; Xiao, X.; Yan, S. Molecular mechanism underlying the hypolipidemic effect of Shanmei Capsule based on network pharmacology and molecular docking. Technol. Health Care, 2021, 29(S1), 239-256.
[http://dx.doi.org/10.3233/THC-218023] [PMID: 33682762]
[25]
He, W.; Dong, S.; Shen, J.; Wu, J.; Zhao, P.; Li, D.; Wang, D.; Tang, N.; Zou, C. Whole-genome sequencing identified novel mutations in a Chinese family with lynch syndrome. Front. Oncol., 2023, 13, 1036356.
[http://dx.doi.org/10.3389/fonc.2023.1036356] [PMID: 36874103]
[26]
Lyu, G.; Li, D.; Li, S.; Hu, H. STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition. Plant Signal. Behav., 2019, 14(12), 1675471.
[http://dx.doi.org/10.1080/15592324.2019.1675471] [PMID: 31595819]
[27]
Yang, D.; Liu, M.; Jiang, J.; Luo, Y.; Wang, Y.; Chen, H.; Li, D.; Wang, D.; Yang, Z.; Chen, H. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers , 2022, 14(24), 6220.
[http://dx.doi.org/10.3390/cancers14246220] [PMID: 36551704]
[28]
Malek-Esfandiari, Z.; Rezvani-Noghani, A.; Sohrabi, T.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Chamani, J. Molecular Dynamics and Multi-Spectroscopic of the Interaction Behavior between Bladder Cancer Cells and Calf Thymus DNA with Rebeccamycin: Apoptosis through the Down Regulation of PI3K/AKT Signaling Pathway. J. Fluoresc., 2023, 33(4), 1537-1557.
[http://dx.doi.org/10.1007/s10895-023-03169-4] [PMID: 36787038]
[29]
Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J. Oil-in-water nanoemulsions comprising Berberine in olive oil: biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn., 2021, 39(3), 1029-1043.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[30]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[31]
Assaran Darban, R.; Shareghi, B.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. J. Biomol. Struct. Dyn., 2017, 35(16), 3648-3662.
[http://dx.doi.org/10.1080/07391102.2016.1264892] [PMID: 27897084]
[32]
Yao, X.; Zhang, X.; Ma, S.; Zheng, C.; Guo, Y.; Lu, W.; Ye, K. Study on the mechanism of sanqi in the treatment of disseminated intravascular coagulation-based on network pharmacology and molecular docking technology. Lett. Drug Des. Discov., 2023, 20(7), 881-893.
[http://dx.doi.org/10.2174/1570180819666220512110520]
[33]
Ong, S.S.; Baker, P.N.; Mayhew, T.M.; Dunn, W.R. Remodeling of myometrial radial arteries in preeclampsia. Am. J. Obstet. Gynecol., 2005, 192(2), 572-579.
[http://dx.doi.org/10.1016/j.ajog.2004.08.015] [PMID: 15696005]
[34]
Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res., 2019, 124(7), 1094-1112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[35]
Burton, GJ; Yung, HW; Cindrova-Davies, T; Charnock-Jones, DS Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta, 2009, 30Suppl(A(Suppl)), S43-8.
[http://dx.doi.org/10.1016/j.placenta.2008.11.003]
[36]
Granger, J.P.; Spradley, F.T.; Bakrania, B.A. The endothelin system: A critical player in the pathophysiology of preeclampsia. Curr. Hypertens. Rep., 2018, 20(4), 32.
[http://dx.doi.org/10.1007/s11906-018-0828-4] [PMID: 29637419]
[37]
Li, J.; Huang, Y.; Zhao, S.; Guo, Q.; Zhou, J.; Han, W.; Xu, Y. Based on network pharmacology to explore the molecular mechanisms of Astragalus membranaceus for treating T2 diabetes mellitus. Ann. Transl. Med., 2019, 7(22), 633.
[http://dx.doi.org/10.21037/atm.2019.10.118] [PMID: 31930034]
[38]
Jin, Q.; Hao, X.F.; Xie, L.K.; Xu, J.; Sun, M.; Yuan, H.; Wang, S.H.; Wu, G.P.; Miao, M.L. A network pharmacology to explore the mechanism of Astragalus membranaceus in the treatment of diabetic retinopathy. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8878569] [PMID: 33204295]
[39]
Ahmed, A. M.; I Alqosaibi, A.; Mohamed, M.A.; Soliman, M.G. Evaluation of some cytokines and gene expressions in pre-eclampsia. Pak. J. Biol. Sci., 2019, 22(3), 148-153.
[http://dx.doi.org/10.3923/pjbs.2019.148.153] [PMID: 30972985]
[40]
Ali, Z.; Zafar, U.; Zaki, S.; Ahmad, S.; Khaliq, S.; Lone, K.P. Expression levels of MiRNA-16, SURVIVIN and TP53 in preeclamptic and normotensive women. J. Pak. Med. Assoc., 2021, 71(9), 2208-2213.
[PMID: 34580516]
[41]
Serrano, N.C.; Guio, E.; Becerra-Bayona, S.M.; Quintero-Lesmes, D.C.; Bautista-Niño, P.K.; Colmenares-Mejía, C.; Páez, M.C.; Luna, M.L.; Díaz, L.A.; Ortiz, R.; Beltrán, M.; Monterrosa, Á.; Miranda, Y.; Mesa, C.M.; Saldarriaga, W.; Casas, J.P. C-reactive protein, interleukin-6 and pre-eclampsia: Large-scale evidence from the GenPE case-control study. Scand. J. Clin. Lab. Invest., 2020, 80(5), 381-387.
[http://dx.doi.org/10.1080/00365513.2020.1747110] [PMID: 32400228]
[42]
Aggarwal, R.; Jain, A.K.; Mittal, P.; Kohli, M.; Jawanjal, P.; Rath, G. Association of pro‐ and anti‐inflammatory cytokines in preeclampsia. J. Clin. Lab. Anal., 2019, 33(4), e22834.
[http://dx.doi.org/10.1002/jcla.22834] [PMID: 30666720]
[43]
Liu, F.; Wu, K.; Wu, W.; Chen, Y.; Wu, H.; Wang, H.; Zhang, W. miR 203 contributes to pre eclampsia via inhibition of VEGFA expression. Mol. Med. Rep., 2018, 17(4), 5627-5634.
[http://dx.doi.org/10.3892/mmr.2018.8558] [PMID: 29436641]
[44]
Liu, Z; Ma, H; Lai, Z Revealing the potential mechanism of Astragalus membranaceus improving prognosis of hepatocellular carcinoma by combining transcriptomics and network pharmacology. BMC complementary medicine and therapies, 2021, 21(1), 263.
[http://dx.doi.org/10.1186/s12906-021-03425-9]
[45]
Wang, W.; Liu, Q.B.; Jing, W. Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells. Chin. J. Nat. Med., 2019, 17(4), 252-263.
[http://dx.doi.org/10.1016/S1875-5364(19)30029-9] [PMID: 31076129]
[46]
Phacharapiyangkul, N.; Wu, L.H.; Lee, W.Y.; Kuo, Y.H.; Wu, Y.J.; Liou, H.P.; Tsai, Y.E.; Lee, C.H. The extracts of Astragalus membranaceus enhance chemosensitivity and reduce tumor indoleamine 2, 3-dioxygenase expression. Int. J. Med. Sci., 2019, 16(8), 1107-1115.
[http://dx.doi.org/10.7150/ijms.33106] [PMID: 31523173]
[47]
Yeh, T.S.; Lei, T.H.; Liu, J.F.; Hsu, M.C. Astragalus membranaceus Enhances Myotube Hypertrophy through PI3K-Mediated Akt/mTOR Signaling Phosphorylation. Nutrients, 2022, 14(8), 1670.
[http://dx.doi.org/10.3390/nu14081670] [PMID: 35458232]
[48]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[49]
Kalhori, F; Yazdyani, H; Khademorezaeian, F; Hamzkanloo, N; Mokaberi, P; Hosseini, S Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence : The journal of biological and chemical luminescence, 2022, 37(11), 1836-45.
[50]
Chamani, J.; Moosavi-Movahedi, A.A.; Hakimelahi, G.H. Structural changes in β-lactoglobulin by conjugation with three different kinds of carboxymethyl cyclodextrins. Thermochim. Acta, 2005, 432(1), 106-111.
[http://dx.doi.org/10.1016/j.tca.2005.04.014]
[51]
Roberge, S.; Bujold, E.; Nicolaides, K.H. Meta-analysis on the effect of aspirin use for prevention of preeclampsia on placental abruption and antepartum hemorrhage. Am. J. Obstet. Gynecol., 2018, 218(5), 483-489.
[http://dx.doi.org/10.1016/j.ajog.2017.12.238] [PMID: 29305829]
[52]
Chen, D.; Yang, S.; Ding, J.; Liu, A. Natural flavonoid quercetin enhances the anti-inflammatory effects of aspirin in a preeclampsia-like rat model induced by lipopolysaccharide. Curr. Mol. Med., 2023, 23(5), 425-432.
[http://dx.doi.org/10.2174/1566524022666220513111637] [PMID: 35570539]