Prediction and Validation of Proline-containing Tripeptides with Angiotensin I-converting Enzyme Inhibitory Activity Using Machine Learning Models

Page: [3069 - 3075] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Numerous inhibitory peptides against angiotensin I-converting enzyme, a target for hypertension treatment, have been found in previous studies. Recently, machine learning screening has been employed to predict unidentified inhibitory peptides using a database of known inhibitory peptides and descriptor data from docking simulations.

Objective: The aim of this study is to focus on angiotensin I-converting enzyme inhibitory tripeptides containing proline, to predict novel inhibitory peptides using the machine learning algorithm PyCaret based on their IC50 and descriptors from docking simulations, and to validate the screening method by machine learning by comparing the results with in vitro inhibitory activity studies.

Methods: IC50 of known inhibitory peptides were collected from an online database, and descriptor data were summarized by docking simulations. Candidate inhibitory peptides were predicted from these data using the PyCaret. Candidate tripeptides were synthesized by solid-phase synthesis and their inhibitory activity was measured in vitro.

Results: Seven novel tripeptides were found from the peptides predicted to have high inhibitory activity by machine learning, and these peptides were synthesized and evaluated for inhibitory activity in vitro. As a result, the proline-containing tripeptide MPA showed high inhibitory activity, with an IC50 value of 8.6 μM.

Conclusion: In this study, we identified a proline-containing tripeptide with high ACE inhibitory activity among the candidates predicted by machine learning. This finding indicates that the method of predicting by machine learning is promising for future inhibitory peptide screening efforts.

[1]
Qidwai, T.; Prasad, S. Angiotensin-converting enzyme inhibition properties and antioxidant effects of plants and their bioactive compounds as cardioprotective agent. Lett. Drug Des. Discov., 2023, 20(4), 457-468.
[http://dx.doi.org/10.2174/1570180819666220513115923]
[2]
Caballero, J. Considerations for docking of selective angiotensin-converting enzyme inhibitors. Molecules, 2020, 25(2), 295.
[http://dx.doi.org/10.3390/molecules25020295] [PMID: 31940798]
[3]
Egan, B.M.; Kjeldsen, S.E.; Grassi, G.; Esler, M.; Mancia, G. The global burden of hypertension exceeds 1.4 billion people. J. Hypertens., 2019, 37(6), 1148-1153.
[http://dx.doi.org/10.1097/HJH.0000000000002021] [PMID: 30624370]
[4]
Natesh, R.; Schwager, S.L.U.; Evans, H.R.; Sturrock, E.D.; Acharya, K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 2004, 43(27), 8718-8724.
[http://dx.doi.org/10.1021/bi049480n] [PMID: 15236580]
[5]
Mora, L.; Gallego, M.; Toldrá, F. ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients, 2018, 10(9), 1259.
[http://dx.doi.org/10.3390/nu10091259] [PMID: 30205453]
[6]
Qian, B.; Tian, C.; Huo, J.; Ding, Z.; Xu, R.; Zhu, J.; Yu, L.; Villarreal, O.D. Design and evaluation of four novel tripeptides as potent angiotensin converting enzyme (ACE) inhibitors with anti-hypertension activity. Peptides, 2019, 122, 170171.
[http://dx.doi.org/10.1016/j.peptides.2019.170171] [PMID: 31614165]
[7]
Du, Z.; Comer, J.; Li, Y. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. Trends Analyt. Chem., 2023, 162, 117051.
[http://dx.doi.org/10.1016/j.trac.2023.117051]
[8]
Song, C.C.; Qiao, B.W.; Zhang, Q.; Wang, C.X.; Fu, Y.H.; Zhu, B.W. Study on the domain selective inhibition of angiotensin‐converting enzyme (ACE) by food‐derived tyrosine‐containing dipeptides. J. Food Biochem., 2021, 45(7), e13779.
[http://dx.doi.org/10.1111/jfbc.13779] [PMID: 34060658]
[9]
Nakamura, Y.; Yamamoto, N.; Sakai, K.; Okubo, A.; Yamazaki, S.; Takano, T. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci., 1995, 78(4), 777-783.
[http://dx.doi.org/10.3168/jds.S0022-0302(95)76689-9] [PMID: 7790570]
[10]
Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem., 2018, 256, 98-104.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.107] [PMID: 29606478]
[11]
Vukic, V.R.; Vukic, D.V.; Milanovic, S.D.; Ilicic, M.D.; Kanuric, K.G.; Johnson, M.S. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I–converting enzyme inhibitory activity. Nutr. Res., 2017, 46, 22-30.
[http://dx.doi.org/10.1016/j.nutres.2017.07.009] [PMID: 29173648]
[12]
Baba, W.N.; Baby, B.; Mudgil, P.; Gan, C.Y.; Vijayan, R.; Maqsood, S. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. Lebensm. Wiss. Technol., 2021, 143, 111135.
[http://dx.doi.org/10.1016/j.lwt.2021.111135]
[13]
Du, A.; Jia, W. Bioaccessibility of novel antihypertensive short-chain peptides in goat milk using the INFOGEST static digestion model by effect-directed assays. Food Chem., 2023, 427, 136735.
[http://dx.doi.org/10.1016/j.foodchem.2023.136735] [PMID: 37392630]
[14]
Yu, Z.; Wu, S.; Zhao, W.; Ding, L.; Shiuan, D.; Chen, F.; Li, J.; Liu, J. Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide. Food Funct., 2018, 9(1), 364-370.
[http://dx.doi.org/10.1039/C7FO01558E] [PMID: 29210412]
[15]
Ohta, T.; Iwashita, A.; Sasaki, S.; Kawamura, Y. Antihypertensive action of the orally administered protease hydrolysates of chum salmon head and their angiotensin i-converting enzyme inhibitory peptides. Food Science and Technology International, Tokyo, 1997, 3(4), 339-343.
[http://dx.doi.org/10.3136/fsti9596t9798.3.339]
[16]
Byun, H-G.; Kim, S-K. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol., 2002, 35(2), 239-243.
[PMID: 12297036]
[17]
Yang, G.; Qin, S.; Li, W. Purification and characterization of a novel angiotensin I‐converting enzyme‐inhibitory peptide derived from Alaska pollack skins. J. Food Sci., 2021, 86(6), 2457-2467.
[http://dx.doi.org/10.1111/1750-3841.15754] [PMID: 34056723]
[18]
Xu, Z.; Wu, C.; Sun-Waterhouse, D.; Zhao, T.; Waterhouse, G.I.N.; Zhao, M.; Su, G. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE. Food Chem., 2021, 345, 128855.
[http://dx.doi.org/10.1016/j.foodchem.2020.128855] [PMID: 33340899]
[19]
Wang, C.; Tu, M.; Wu, D.; Chen, H.; Chen, C.; Wang, Z.; Jiang, L. Identification of an ACE-inhibitory peptide from walnut protein and its evaluation of the inhibitory mechanism. Int. J. Mol. Sci., 2018, 19(4), 1156.
[http://dx.doi.org/10.3390/ijms19041156] [PMID: 29641461]
[20]
Morikawa, R.; Toji, K.; Kumagai, Y.; Kishimura, H. ACE inhibitory effect of the protein hydrolysates prepared from commercially available nori product by pepsin–trypsin digestion. Eur. Food Res. Technol., 2022, 248(1), 243-251.
[http://dx.doi.org/10.1007/s00217-021-03876-x]
[21]
Wang, R.; Lu, X.; Sun, Q.; Gao, J.; Ma, L.; Huang, J. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. Int. J. Mol. Sci., 2020, 21(3), 1059.
[http://dx.doi.org/10.3390/ijms21031059] [PMID: 32033479]
[22]
Nakano, D.; Ogura, K.; Miyakoshi, M.; Ishii, F.; Kawanishi, H.; Kurumazuka, D.; Kwak, C.; Ikemura, K.; Takaoka, M.; Moriguchi, S.; Iino, T.; Kusumoto, A.; Asami, S.; Shibata, H.; Kiso, Y.; Matsumura, Y. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 2006, 70(5), 1118-1126.
[http://dx.doi.org/10.1271/bbb.70.1118] [PMID: 16717411]
[23]
Tang, H.; Wang, C.; Cao, S.; Wang, F. Novel angiotensin I‐converting enzyme (ACE) inhibitory peptides from walnut protein isolate: Separation, identification and molecular docking study. J. Food Biochem., 2022, 46(12), e14411.
[http://dx.doi.org/10.1111/jfbc.14411] [PMID: 36121201]
[24]
Arámburo-Gálvez, J.G.; Arvizu-Flores, A.A.; Cárdenas-Torres, F.I.; Cabrera-Chávez, F.; Ramírez-Torres, G.I.; Flores-Mendoza, L.K.; Gastelum-Acosta, P.E.; Figueroa-Salcido, O.G.; Ontiveros, N. Prediction of ACE-I inhibitory peptides derived from chickpea (Cicer arietinum L.): in silico assessments using simulated enzymatic hydrolysis, molecular docking and ADMET evaluation. Foods, 2022, 11(11), 1576.
[http://dx.doi.org/10.3390/foods11111576] [PMID: 35681326]
[25]
Zheng, Y.; Wang, X.; Zhuang, Y.; Li, Y.; Shi, P.; Tian, H.; Li, X.; Chen, X. Isolation of novel ACE‐inhibitory peptide from naked oat globulin hydrolysates in silico approach: Molecular docking, in vivo antihypertension and effects on renin and intracellular endothelin‐1. J. Food Sci., 2020, 85(4), 1328-1337.
[http://dx.doi.org/10.1111/1750-3841.15115] [PMID: 32220144]
[26]
Liu, L.; Wei, Y.; Chang, Q.; Sun, H.; Chai, K.; Huang, Z.; Zhao, Z.; Zhao, Z. Ultrafast screening of a novel, moderately hydrophilic angiotensin-converting-enzyme-inhibitory Peptide, RYL, from silkworm pupa using an Fe-Doped-Silkworm-Excrement-Derived biocarbon: waste conversion by waste. J. Agric. Food Chem., 2017, 65(51), 11202-11211.
[http://dx.doi.org/10.1021/acs.jafc.7b04442] [PMID: 29215878]
[27]
Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study. Peptides, 2015, 68, 17-24.
[http://dx.doi.org/10.1016/j.peptides.2014.07.026] [PMID: 25111373]
[28]
Ianzer, D.; Santos, R.A.S.; Etelvino, G.M.; Xavier, C.H.; de Almeida Santos, J.; Mendes, E.P.; Machado, L.T.; Prezoto, B.C.; Dive, V.; de Camargo, A.C.M. Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca. J. Pharmacol. Exp. Ther., 2007, 322(2), 795-805.
[http://dx.doi.org/10.1124/jpet.107.120873] [PMID: 17475904]
[29]
Bodanszky, A.; Ondetti, M.A.; Ralofsky, C.A.; Bodanszky, M. Optical rotatory dispersion of proline-rich peptides from the venom ofBothrops jararaca. Experientia, 1971, 27(11), 1269-1270.
[http://dx.doi.org/10.1007/BF02136679] [PMID: 5134269]
[30]
Ondetti, M.A.; Williams, N.J.; Sabo, E.; Pluscec, J.; Weaver, E.R.; Kocy, O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry, 1971, 10(22), 4033-4039.
[http://dx.doi.org/10.1021/bi00798a004] [PMID: 4334402]
[31]
Hatakenaka, T.; Kato, T.; Okamoto, K. In vitro and in silico studies on angiotensin I-converting enzyme inhibitory peptides found in hydrophobic domains of porcine elastin. Molecules, 2023, 28(8), 3337.
[http://dx.doi.org/10.3390/molecules28083337] [PMID: 37110571]
[32]
Hatakenaka, T.; Kato, T.; Okamoto, K. Novel oligopeptides with angiotensin I-converting enzyme inhibitory activity found in an elastase-treated hydrolysate of porcine aortic elastin. Proceedings of the 35th European Peptide Symposium, , 251-252.2018,
[http://dx.doi.org/10.17952/35EPS.2018.251]
[33]
Du, Z.; Wang, D.; Li, Y. Comprehensive evaluation and comparison of machine learning methods in QSAR modeling of antioxidant tripeptides. ACS Omega, 2022, 7(29), 25760-25771.
[http://dx.doi.org/10.1021/acsomega.2c03062] [PMID: 35910147]
[34]
Kalyan, G.; Junghare, V.; Khan, M.F.; Pal, S.; Bhattacharya, S.; Guha, S.; Majumder, K.; Chakrabarty, S.; Hazra, S. Anti-hypertensive peptide predictor: a machine learning-empowered web server for prediction of food-derived peptides with potential angiotensin-converting enzyme-I inhibitory activity. J. Agric. Food Chem., 2021, 69(49), 14995-15004.
[http://dx.doi.org/10.1021/acs.jafc.1c04555] [PMID: 34855377]
[35]
Yu, Y.; Xu, S.; He, R.; Liang, G. Application of molecular simulation methods in food science: Status and prospects. J. Agric. Food Chem., 2023, 71(6), 2684-2703.
[http://dx.doi.org/10.1021/acs.jafc.2c06789] [PMID: 36719790]
[36]
Tripathi, A.; Goswami, T.; Trivedi, S.K.; Sharma, R.D. A multi class random forest (MCRF) model for classification of small plant peptides. Int. J. Inf. Manag. Data Insights, 2021, 1(2), 100029.
[http://dx.doi.org/10.1016/j.jjimei.2021.100029]
[37]
Ansari, M.; White, A.D. Serverless prediction of peptide properties with recurrent neural networks. J. Chem. Inf. Model., 2023, 63(8), 2546-2553.
[http://dx.doi.org/10.1021/acs.jcim.2c01317] [PMID: 37010950]
[38]
Shen, Y.; Liu, C.; Chi, K.; Gao, Q.; Bai, X.; Xu, Y.; Guo, N. Development of a machine learning-based predictor for identifying and discovering antioxidant peptides based on a new strategy. Food Control, 2022, 131, 108439.
[http://dx.doi.org/10.1016/j.foodcont.2021.108439]
[39]
Wang, L.; Niu, D.; Wang, X.; Khan, J.; Shen, Q.; Xue, Y. A novel machine learning strategy for the prediction of antihypertensive peptides derived from food with high efficiency. Foods, 2021, 10(3), 550.
[http://dx.doi.org/10.3390/foods10030550] [PMID: 33800877]
[40]
Wang, F.; Zhou, B. Investigation of angiotensin-I-converting enzyme (ACE) inhibitory tri-peptides: A combination of 3D-QSAR and molecular docking simulations. RSC Advances, 2020, 10(59), 35811-35819.
[http://dx.doi.org/10.1039/D0RA05119E] [PMID: 35517085]
[41]
Wang, Y.T.; Russo, D.P.; Liu, C.; Zhou, Q.; Zhu, H.; Zhang, Y.H. Predictive modeling of angiotensin i-converting enzyme inhibitory peptides using various machine learning approaches. J. Agric. Food Chem., 2020, 68(43), 12132-12140.
[http://dx.doi.org/10.1021/acs.jafc.0c04624] [PMID: 32915574]
[42]
Chen, J.; Ryu, B.; Zhang, Y.; Liang, P.; Li, C.; Zhou, C.; Yang, P.; Hong, P.; Qian, Z.J. Comparison of an angiotensin‐I‐converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: Inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J. Sci. Food Agric., 2020, 100(1), 315-324.
[http://dx.doi.org/10.1002/jsfa.10041] [PMID: 31525262]
[43]
Ma, F.F.; Wang, H.; Wei, C.K.; Thakur, K.; Wei, Z.J.; Jiang, L. Three novel ace inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism. Front. Pharmacol., 2019, 9(JAN), 1579.
[http://dx.doi.org/10.3389/fphar.2018.01579] [PMID: 30697161]
[44]
Wongngam, W.; Hamzeh, A.; Tian, F.; Roytrakul, S.; Yongsawatdigul, J. Purification and molecular docking of angiotensin converting enzyme-inhibitory peptides derived from corn gluten meal hydrolysate and from in silico gastrointestinal digestion. Process Biochem., 2023, 129, 113-120.
[http://dx.doi.org/10.1016/j.procbio.2023.03.006]
[45]
Liang, F.; Shi, Y.; Shi, J.; Zhang, T.; Zhang, R. A novel Angiotensin-I-converting enzyme (ACE) inhibitory peptide IAF (Ile-Ala-Phe) from pumpkin seed proteins: In silico screening, inhibitory activity, and molecular mechanisms. Eur. Food Res. Technol., 2021, 247(9), 2227-2237.
[http://dx.doi.org/10.1007/s00217-021-03783-1]
[46]
Senadheera, T.R.L.; Hossain, A.; Dave, D.; Shahidi, F. In silico analysis of bioactive peptides produced from underutilized sea Cucumber By-Products—A Bioinformatics approach. Mar. Drugs, 2022, 20(10), 610.
[http://dx.doi.org/10.3390/md20100610] [PMID: 36286434]
[47]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[48]
Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev., 2009, 109(6), 2455-2504.
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
[49]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852.
[http://dx.doi.org/10.1016/j.tet.2005.08.031]
[50]
Sobocińska, M.; Giełdoń, A.; Fichna, J.; Kamysz, E. 1-Substituted sialorphin analogues—synthesis, molecular modelling and in vitro effect on enkephalins degradation by NEP. Amino Acids, 2019, 51(8), 1201-1207.
[http://dx.doi.org/10.1007/s00726-019-02760-z] [PMID: 31302778]