[8]
Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), PP.3844-3852, 2016.
[16]
Yunsheng, S.; Zhengjie, H.; Shikun, F.; Hui, Z.; Wenjing, W.; Yu, S. Masked label prediction: unified message passing model for semi-supervised classification. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp.1548-1554, 2021.
[17]
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. 6th International Conference on Learning Representations, 2018.Vancouver, Canada
[18]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 2016 Jun, pp. 770-778.
[19]
Li, G.; Xiong, C.; Qian, G.; Thabet, A.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. 10th International Conference on Learning Representations, 2021.
[20]
Brody, S.; Alon, U.; Yahav, E. How attentive are graph attention networks? 10th International Conference on Learning Representations, 2022.
[21]
You, J.; Ying, R.; Leskovec, J. Design space for graph neural networks. Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), pp.17009-17021,2020.
[23]
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for Quantum chemistry. Proceedings of the 34th International Conference on Machine Learning, pp.1263-1272, 2017.
[24]
Zhou, Z.; Sun, M.; Tang, Y.; Liang, P.; Liang, D.; Chang, Q. Screening and activity verification of osteogenic compounds from salvia miltiorrhiza based on virtual screening. J. Jiang/ Univ., 2022, 32(5), 1-13.
[25]
Sun, M.; Liang, P.; Zhou, Z. Screening of bone promoting active ingredients in ginkgo bilobaon bioinformatics. Central South Pharmacy., 2022, 20(3), 517-524.
[26]
Liao, Y.; Zhang, X.; Li, C.; Qiu, F. Research progress on the correlation between traditional Chinese medicine syndrome and bone turnover markers of osteoporosis. Zhongguo Guzhi Shusong Zazhi, 2022, 28(12), 1823-1827.
[28]
Fan, H.; Guo, J.; Xin, B. Analysis of modern molecular pharmacology mechanism and clinical application of puerarin. Gansu Med. J., 2020, 39(8), 684-690.
[29]
Liang, Q.; Li, H.; Xie, J. Effects of Puerarin on OPG, RANKL and bone tissue in postmenopausal osteoporosis model rats. Zhongguo Laonianxue Zazhi, 2019, 39(16), 4031-4034.
[30]
Chen, H.; Pang, J.; Zhang, X.; Sun, J.; Zhou, L.; Liu, B. Effects of puerarin on bone mineral density around the artificial prosthesis of elderly patients after osteoporotic fracture artificial hip joint replacement. Jiyinzuxue Yu Yingyong Shengwuxue, 2019, 38(12), 5695-5699.
[31]
Wang, C.; Su, Z.; Dong, X. Therapeutic effect and the underlying molecular mechanism of aucubin on osteoporosis in castrated rats. Zhej. J. Integ. Trad. Chin. West. Med., 2022, 32(6), 511-544.
[32]
Li, Y. Study on Aucubin Promotes Osteoblast Differentiation and Inhibits Osteoporosis through Nrf2/Keap1 Signaling Pathway. PhD dissertation; Jilin University: Changchun (Jilin Province), 2019.