Denosumab Induces Neoplastic Stromal Cell Apoptosis Via p62 Downregulation Dependent on Autophagy Pathway in Giant Cell Tumour of Bone

Page: [565 - 578] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: As the only humanized monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL) for giant cell tumour of bone (GCTB) therapy, denosumab has limited antitumour effect on neoplastic stromal cells. Nevertheless, its mechanism of action has not yet been clarified. A previous study has revealed that p62 may play an important role in the antitumour activity of denosumab.

Objective: The study aimed to investigate if the mechanism by which denosumab inhibits GCTB neoplastic stromal cells growth is via p62 modulation and other related mechanisms.

Methods: p62 expression before and after denosumab therapy was analysed by RT‒qPCR, western blot, ELISA, and immunohistochemical assays. Two primary neoplastic stromal cells were isolated from fresh GCTB tumour tissue (L cell) and metastatic tissue (M cell). Cell proliferation, migration, apoptosis, and autophagy were investigated in p62 knockdown neoplastic stromal cells transfected by short hairpin RNA lentivirus in vitro. Tumor growth was evaluated in the chick chorioallantoic membrane model in vivo.

Results: p62 expression was found to be downregulated following denosumab therapy. The patients with a decrease in p62 expression had lower recurrence-free survival rates. The proliferation of M cells was not inhibited by denosumab therapy, but it was restored by p62 knockdown. Moreover, p62 knockdown inhibited tumour growth in vivo. Denosumab induced M cell apoptosis and arrested the cell cycle at the G1/G0 transition and these effects were also enhanced by p62 knockdown. Autophagic flux assays revealed p62 modulation to be dependent on autophagy following denosumab incubation.

Conclusion: Denosumab induced neoplastic stromal cells apoptosis via p62 downregulation dependent on autophagy pathway. The combination of p62 and RANKL knockdown might be a better strategy than RANKL knockdown alone for GCTB targeted therapy.

Graphical Abstract

[1]
Choi, J.H.; Ro, J.Y. The 2020 WHO classification of tumors of soft tissue: Selected changes and new entities. Adv. Anat. Pathol., 2021, 28(1), 44-58.
[http://dx.doi.org/10.1097/PAP.0000000000000284] [PMID: 32960834]
[2]
Parmeggiani, A.; Miceli, M.; Errani, C.; Facchini, G. State of the art and new concepts in giant cell tumor of bone: Imaging features and tumor characteristics. Cancers, 2021, 13(24), 6298.
[http://dx.doi.org/10.3390/cancers13246298] [PMID: 34944917]
[3]
Tsukamoto, S.; Mavrogenis, A.F.; Kido, A.; Errani, C. Current concepts in the treatment of giant cell tumors of bone. Cancers, 2021, 13(15), 3647.
[http://dx.doi.org/10.3390/cancers13153647] [PMID: 34359548]
[4]
Mavrogenis, A.F.; Igoumenou, V.G.; Megaloikonomos, P.D.; Panagopoulos, G.N.; Papagelopoulos, P.J.; Soucacos, P.N. Giant cell tumor of bone revisited. SICOT J., 2017, 3, 54.
[http://dx.doi.org/10.1051/sicotj/2017041] [PMID: 28905737]
[5]
Palmerini, E.; Picci, P.; Reichardt, P.; Downey, G. Malignancy in giant cell tumor of bone: A review of the literature. Technol. Cancer Res. Treat., 2019, 18
[http://dx.doi.org/10.1177/1533033819840000] [PMID: 30935298]
[6]
Niu, X.; Zhang, Q.; Hao, L.; Ding, Y.; Li, Y.; Xu, H.; Liu, W. Giant cell tumor of the extremity: Retrospective analysis of 621 Chinese patients from one institution. J. Bone Joint Surg. Am., 2012, 94(5), 461-467.
[http://dx.doi.org/10.2106/JBJS.J.01922] [PMID: 22398741]
[7]
Errani, C.; Tsukamoto, S.; Ciani, G.; Donati, D.M. Present day controversies and consensus in curettage for giant cell tumor of bone. J. Clin. Orthop. Trauma, 2019, 10(6), 1015-1020.
[http://dx.doi.org/10.1016/j.jcot.2019.09.017] [PMID: 31736607]
[8]
Roessner, A.; Smolle, M.; Haybäck, J. Giant cell tumor of bone. Pathologe, 2020, 41(2), 134-142.
[http://dx.doi.org/10.1007/s00292-020-00760-5] [PMID: 32086536]
[9]
Noh, B.J.; Park, Y.K. Giant cell tumor of bone: Updated molecular pathogenesis and tumor biology. Hum. Pathol., 2018, 81, 1-8.
[http://dx.doi.org/10.1016/j.humpath.2018.06.017] [PMID: 29944971]
[10]
Nagano, A.; Urakawa, H.; Tanaka, K.; Ozaki, T. Current management of giant-cell tumor of bone in the denosumab era. Jpn. J. Clin. Oncol., 2022, 52(5), 411-416.
[http://dx.doi.org/10.1093/jjco/hyac018] [PMID: 35199172]
[11]
Chawla, S.; Blay, J.Y.; Rutkowski, P.; Le Cesne, A.; Reichardt, P.; Gelderblom, H.; Grimer, R.J.; Choy, E.; Skubitz, K.; Seeger, L.; Schuetze, S.M.; Henshaw, R.; Dai, T.; Jandial, D.; Palmerini, E. Denosumab in patients with giant-cell tumour of bone: A multicentre, open-label, phase 2 study. Lancet Oncol., 2019, 20(12), 1719-1729.
[http://dx.doi.org/10.1016/S1470-2045(19)30663-1] [PMID: 31704134]
[12]
Lim, C. Y.; Liu, X.; He, F.; Liang, H.; Yang, Y.; Ji, T.; Yang, R.; Guo, W. Retrospective cohort study of 68 sacral giant cell tumours treated with nerve-sparing surgery and evaluation on therapeutic benefits of denosumab therapy. Bone Joint J., 2020, 102-b(2), 177-185.
[http://dx.doi.org/10.1302/0301-620X.102B2.BJJ-2019-0813.R1]
[13]
Zhao, Y.; Cai, Z.; Tang, X.; Du, Z.; Yang, Y.; Guo, W. Preoperative denosumab may increase the risk of local recurrence of giant-cell tumor of bone treated with curettage: A systematic review and meta-analysis. J. Cancer, 2021, 12(2), 508-517.
[http://dx.doi.org/10.7150/jca.50575] [PMID: 33391447]
[14]
Tsukamoto, S.; Tanaka, Y.; Mavrogenis, A.F.; Kido, A.; Kawaguchi, M.; Errani, C. Is treatment with denosumab associated with local recurrence in patients with giant cell tumor of bone treated with curettage? a systematic review. Clin. Orthop. Relat. Res., 2020, 478(5), 1076-1085.
[http://dx.doi.org/10.1097/CORR.0000000000001074] [PMID: 31794487]
[15]
Borkowska, A.M.; Szumera-Ciećkiewicz, A.; Szostakowski, B.; Pieńkowski, A.; Rutkowski, P.L. Denosumab in giant cell tumor of bone: Multidisciplinary medical management based on pathophysiological mechanisms and real-world evidence. Cancers, 2022, 14(9), 2290.
[http://dx.doi.org/10.3390/cancers14092290] [PMID: 35565419]
[16]
Sánchez-Martín, P.; Saito, T.; Komatsu, M. p62/SQSTM 1: ‘Jack of all trades’ in health and cancer. FEBS J., 2019, 286(1), 8-23.
[http://dx.doi.org/10.1111/febs.14712] [PMID: 30499183]
[17]
Ning, S.; Wang, L. The multifunctional protein p62 and its mechanistic roles in cancers. Curr. Cancer Drug Targets, 2019, 19(6), 468-478.
[http://dx.doi.org/10.2174/1568009618666181016164920] [PMID: 30332964]
[18]
Zhang, J.; Yang, Z.; Dong, J. P62: An emerging oncotarget for osteolytic metastasis. J. Bone Oncol., 2016, 5(1), 30-37.
[http://dx.doi.org/10.1016/j.jbo.2016.01.003] [PMID: 26998424]
[19]
Liu, S.; Ye, F.; Li, D.; He, C.; He, H.; Zhang, J. p62 overexpression promotes neoplastic stromal cell proliferation and is associated with the recurrence of giant cell tumor of bone. Oncol. Lett., 2020, 20(4), 1.
[http://dx.doi.org/10.3892/ol.2020.11947] [PMID: 32863919]
[20]
Li, D.; He, C.; Ye, F.; Ye, E.; He, H.; Chen, G.; Zhang, J. p62 overexpression promotes bone metastasis of lung adenocarcinoma out of LC3-dependent autophagy. Front. Oncol., 2021, 11, 609548.
[http://dx.doi.org/10.3389/fonc.2021.609548] [PMID: 34094898]
[21]
Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A. Guidelines for the use and interpretation of assays for monitoring autophagy Autophagy, 2021, 17(1), 1-382.
[http://dx.doi.org/10.1080/15548627.2020.1797280]
[22]
Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; Nik-Zainal, S.; Martin, S.; McLaren, S.; Goody, V.; Robinson, B.; Butler, A.; Teague, J.W.; Halai, D.; Khatri, B.; Myklebost, O.; Baumhoer, D.; Jundt, G.; Hamoudi, R.; Tirabosco, R.; Amary, M.F.; Futreal, P.A.; Stratton, M.R.; Campbell, P.J.; Flanagan, A.M. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet., 2013, 45(12), 1479-1482.
[http://dx.doi.org/10.1038/ng.2814] [PMID: 24162739]
[23]
Amary, F.; Berisha, F.; Ye, H.; Gupta, M.; Gutteridge, A.; Baumhoer, D.; Gibbons, R.; Tirabosco, R.; O’Donnell, P.; Flanagan, A.M. H3F3A (Histone 3.3) G34W immunohistochemistry. Am. J. Surg. Pathol., 2017, 41(8), 1059-1068.
[http://dx.doi.org/10.1097/PAS.0000000000000859] [PMID: 28505000]
[24]
Noguchi, R.; Yoshimatsu, Y.; Ono, T.; Sei, A.; Hirabayashi, K.; Ozawa, I.; Kikuta, K.; Kondo, T. Establishment and characterization of NCC-GCTB1-C1: A novel patient-derived cancer cell line of giant cell tumor of bone. Hum. Cell, 2020, 33(4), 1321-1328.
[http://dx.doi.org/10.1007/s13577-020-00415-w] [PMID: 32815117]
[25]
Khazaei, S.; De Jay, N.; Deshmukh, S.; Hendrikse, L.D.; Jawhar, W.; Chen, C.C.L.; Mikael, L.G.; Faury, D.; Marchione, D.M.; Lanoix, J.; Bonneil, É.; Ishii, T.; Jain, S.U.; Rossokhata, K.; Sihota, T.S.; Eveleigh, R.; Lisi, V.; Harutyunyan, A.S.; Jung, S.; Karamchandani, J.; Dickson, B.C.; Turcotte, R.; Wunder, J.S.; Thibault, P.; Lewis, P.W.; Garcia, B.A.; Mack, S.C.; Taylor, M.D.; Garzia, L.; Kleinman, C.L.; Jabado, N. H3.3 G34W promotes growth and impedes differentiation of osteoblast-like mesenchymal progenitors in giant cell tumor of bone. Cancer Discov., 2020, 10(12), 1968-1987.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0461] [PMID: 32967858]
[26]
Fellenberg, J.; Sähr, H.; Mancarella, D.; Plass, C.; Lindroth, A.M.; Westhauser, F.; Lehner, B.; Ewerbeck, V. Knock-down of oncohistone H3F3A-G34W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Lett., 2019, 448, 61-69.
[http://dx.doi.org/10.1016/j.canlet.2019.02.001] [PMID: 30742944]
[27]
Jain, S.U.; Khazaei, S.; Marchione, D.M.; Lundgren, S.M.; Wang, X.; Weinberg, D.N.; Deshmukh, S.; Juretic, N.; Lu, C.; Allis, C.D.; Garcia, B.A.; Jabado, N.; Lewis, P.W. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27354-27364.
[http://dx.doi.org/10.1073/pnas.2006076117] [PMID: 33067396]
[28]
Venneker, S.; van Eenige, R.; Kruisselbrink, A.B.; Palubeckaitė, I.; Taliento, A.E.; Briaire-de Bruijn, I.H.; Hogendoorn, P.C.W.; van de Sande, M.A.J.; Gelderblom, H.; Mei, H.; Bovée, J.V.M.G.; Szuhai, K. Histone deacetylase inhibitors as a therapeutic strategy to eliminate neoplastic “Stromal” cells from giant cell tumors of bone. Cancers, 2022, 14(19), 4708.
[http://dx.doi.org/10.3390/cancers14194708] [PMID: 36230631]
[29]
Xiang, F.; Liu, H.; Deng, J.; Ma, W.; Chen, Y. Progress on denosumab use in giant cell tumor of bone: Dose and duration of therapy. Cancers, 2022, 14(23), 5758.
[http://dx.doi.org/10.3390/cancers14235758] [PMID: 36497239]
[30]
Branstetter, D.G.; Nelson, S.D.; Manivel, J.C.; Blay, J.Y.; Chawla, S.; Thomas, D.M.; Jun, S.; Jacobs, I. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin. Cancer Res., 2012, 18(16), 4415-4424.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0578] [PMID: 22711702]
[31]
Antal, I.; Pápai, Z.; Szendrői, M.; Perlaky, T.; Dezső, K.; Lippai, Z.; Sápi, Z. The activation of PDGFRβ on mononuclear stromal/tumor cells in giant cell tumor of bone after denosumab treatment. An immunohistochemical study of five cases. Pathol. Oncol. Res., 2022, 28, 1610633.
[http://dx.doi.org/10.3389/pore.2022.1610633] [PMID: 36091939]
[32]
McManus, S.; Roux, S. The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. J. Mol. Signal., 2012, 7, 1.
[http://dx.doi.org/10.1186/1750-2187-7-1] [PMID: 22216904]
[33]
Ponomarenko, D.M.; Klimova, I.D.; Chapygina, Y.A.; Dvornichenko, V.V.; Zhukova, N.V.; Orlova, R.V.; Manikhas, G.M.; Zyryanov, A.V.; Burkhanova, L.A.; Badrtdinova, I.I.; Oshchepkov, B.N.; Filippova, E.V.; Orlov, S.V.; Kolesnikov, S.I.; Sufianov, A.A.; Baum, S.R.; Zaitzeva, O.Y.; Komissarov, A.B.; Grudinin, M.P.; Kiselev, O.I.; Tsyb, A.F.; Venanzi, F.; Shcherbinina, V.; Chursov, A.; Gabai, V.L.; Shneider, A.M. Safety and efficacy of p62 DNA vaccine ELENAGEN in a first-in-human trial in patients with advanced solid tumors. Oncotarget, 2017, 8(32), 53730-53739.
[http://dx.doi.org/10.18632/oncotarget.16574] [PMID: 28881846]
[34]
Tang, J.; Li, Y.; Xia, S.; Li, J.; Yang, Q.; Ding, K.; Zhang, H. Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). Int. J. Oncol., 2021, 59(4), 77.
[http://dx.doi.org/10.3892/ijo.2021.5257] [PMID: 34414460]
[35]
Shibuya, I.; Takami, M.; Miyamoto, A.; Karakawa, A.; Dezawa, A.; Nakamura, S.; Kamijo, R. In vitro study of the effects of denosumab on giant cell tumor of bone: Comparison with zoledronic acid. Pathol. Oncol. Res., 2019, 25(1), 409-419.
[http://dx.doi.org/10.1007/s12253-017-0362-8] [PMID: 29159783]
[36]
van Langevelde, K.; Cleven, A.H.G.; Navas Cañete, A.; van der Heijden, L.; van de Sande, M.A.J.; Gelderblom, H.; Bovée, J.V.M.G. Malignant transformation of giant cell tumor of bone and the association with denosumab treatment: A radiology and pathology perspective. Sarcoma, 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/3425221] [PMID: 35814640]
[37]
Onji, M.; Penninger, J. M. RANKL and RANK in cancer therapy. Physiology, 2023, 38(3), 0.
[http://dx.doi.org/10.1152/physiol.00020.2022]
[38]
Scagliotti, G.V.; Hirsh, V.; Siena, S.; Henry, D.H.; Woll, P.J.; Manegold, C.; Solal-Celigny, P.; Rodriguez, G.; Krzakowski, M.; Mehta, N.D.; Lipton, L.; García-Sáenz, J.A.; Pereira, J.R.; Prabhash, K.; Ciuleanu, T.E.; Kanarev, V.; Wang, H.; Balakumaran, A.; Jacobs, I. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: Subgroup analysis from a randomized phase 3 study. J. Thorac. Oncol., 2012, 7(12), 1823-1829.
[http://dx.doi.org/10.1097/JTO.0b013e31826aec2b] [PMID: 23154554]
[39]
Coleman, R.; Finkelstein, D.M.; Barrios, C.; Martin, M.; Iwata, H.; Hegg, R.; Glaspy, J.; Periañez, A.M.; Tonkin, K.; Deleu, I.; Sohn, J.; Crown, J.; Delaloge, S.; Dai, T.; Zhou, Y.; Jandial, D.; Chan, A. Adjuvant denosumab in early breast cancer (D-CARE): An international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 60-72.
[http://dx.doi.org/10.1016/S1470-2045(19)30687-4] [PMID: 31806543]
[40]
Angela, Y.; Haferkamp, S.; Weishaupt, C.; Ugurel, S.; Becker, J.C.; Oberndörfer, F.; Alar, V.; Satzger, I.; Gutzmer, R. Combination of denosumab and immune checkpoint inhibition: experience in 29 patients with metastatic melanoma and bone metastases. Cancer Immunol. Immunother., 2019, 68(7), 1187-1194.
[http://dx.doi.org/10.1007/s00262-019-02353-5] [PMID: 31187176]
[41]
Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncol., 2022, 23(10), e450-e458.
[http://dx.doi.org/10.1016/S1470-2045(22)00372-2] [PMID: 36174631]