A Novel Deep Learning Model for Drug-drug Interactions

Page: [666 - 672] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Drug-drug interactions (DDIs) can lead to adverse events and compromised treatment efficacy that emphasize the need for accurate prediction and understanding of these interactions.

Methods: In this paper, we propose a novel approach for DDI prediction using two separate message-passing neural network (MPNN) models, each focused on one drug in a pair. By capturing the unique characteristics of each drug and their interactions, the proposed method aims to improve the accuracy of DDI prediction. The outputs of the individual MPNN models combine to integrate the information from both drugs and their molecular features. Evaluating the proposed method on a comprehensive dataset, we demonstrate its superior performance with an accuracy of 0.90, an area under the curve (AUC) of 0.99, and an F1-score of 0.80. These results highlight the effectiveness of the proposed approach in accurately identifying potential drugdrug interactions.

Results: The use of two separate MPNN models offers a flexible framework for capturing drug characteristics and interactions, contributing to our understanding of DDIs. The findings of this study have significant implications for patient safety and personalized medicine, with the potential to optimize treatment outcomes by preventing adverse events.

Conclusion: Further research and validation on larger datasets and real-world scenarios are necessary to explore the generalizability and practicality of this approach.

[1]
Abdul Raheem, K.A; Dhannoon, N.B. Automating drug discovery using machine learning. Curr. Drug. Discov. Technol., 2023, 20(6), 79-86.
[http://dx.doi.org/10.2174/1570163820666230607163313]
[2]
Hu, G; Agarwal, P; Easton, JB Predicting synergism of cancer drugs using NCI-ALMANAC data. BMC Bioinformatics, 2016, 17(19), 478.
[3]
Luo, Y.; Zhao, X.; Zhou, J. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics, 2019, 20(2), 72.
[http://dx.doi.org/10.1186/s12859-019-2624-x]
[4]
Wang, Y.; Zhang, J.; Li, F. DeepDDI: Predicting drug-drug interactions using attention-based convolutional neural network. Bioinformatics, 2019, 35(17), 3055-3061.
[http://dx.doi.org/10.1093/bioinformatics/btz044] [PMID: 30657866]
[5]
Yao, Z.; Dong, L.; Han, L. DeepDDI-CNN: A deep learning model for predicting drug-drug interactions. BMC Bioinformatics, 2020, 21(13), 476.
[http://dx.doi.org/10.1186/s12859-020-03845-7]
[6]
Cheng, F.; Sun, G.; Li, H. Prediction of drug-drug interactions using multitask deep learning. PLOS Comput. Biol., 2021, 17(1), e1008553.
[http://dx.doi.org/10.1371/journal.pcbi.1008553]
[7]
Wang, J.; Zhao, Y.; Liu, B. HANNDDI: A heterogeneous information network-based artificial neural network model for drug-drug interaction prediction. Front. Pharmacol., 2020, 11, 40.
[http://dx.doi.org/10.3389/fphar.2020.00040]
[8]
Wang, H.; Liu, W.; Yang, H. Transfer learning-based drug-drug interaction prediction by integrating shared structures and features. Front. Genet., 2021, 12, 681126.
[http://dx.doi.org/10.3389/fgene.2021.681126]
[9]
Li, Y.; Yao, Y.; Zhang, M. Domain adaptation-based prediction of drug-drug interactions with matrix factorization. Brief. Bioinform., 2020, 21(6), 2299-2311.
[http://dx.doi.org/10.1093/bib/bbz070] [PMID: 31774907]
[10]
Liu, C.; Wu, M.; Zhuang, Y. GCNDDI: Graph convolutional network for drug-drug interaction prediction. Molecules, 2019, 24(17), 3075.
[http://dx.doi.org/10.3390/molecules24173075] [PMID: 31450574]
[11]
Wang, Y.; Zhu, C.; Yang, Y. Network-based prediction of drug-drug interactions using an efficient matrix factorization technique. BMC Bioinformatics, 2022, 23(Suppl. 4), 91.
[http://dx.doi.org/10.1186/s12859-022-04683-6]
[12]
Wang, X.; Wu, Z.; Liu, Q.; Luo, J. Predicting drug–drug interactions through deep learning. Comput. Struct. Biotechnol. J., 2020, 18, 2196-2204.
[13]
Wei, X.; Tao, L.; Cui, L.; Tian, Y.; Zheng, Y.; Yang, Y. Graph convolutional network-based method for predicting drug-drug interactions. J. Chem. Inf. Model., 2019, 59(7), 3026-3034.
[14]
Chen, Q.; Wang, D.; Liu, H.; Liu, S.; Zhang, L. A hybrid deep learning approach for drug–drug interaction detection. Int. J. Mol. Sci., 2020, 21(15), 5473.
[PMID: 32751833]
[15]
Peng, S.; Zhang, Y.; Zhang, J.; Lin, W.; Leung, H.C. Compound–protein interaction prediction for new target identification using deep learning. BMC Bioinformatics, 2020, 21(1), 1-25.
[PMID: 31898485]
[16]
Chen, X.; Zhang, C.; Ke, G.; Xu, R. Drug combination prediction with deep learning. J. Chem. Inf. Model., 2020, 60(11), 5277-5288.
[PMID: 32805108]
[17]
Li, Y.; Li, Y.; Yang, Y. DDIPLM: Predicting drug-drug interactions based on pharmacological pathways, chemical structures, and side effect profiles. J. Chem. Inf. Model., 2020, 60(2), 1197-1204.
[18]
Li, Y.; Wu, Z. PDDI: Prediction of drug-drug interactions based on clinical side effects. Molecules, 2018, 23(5), 1066.
[http://dx.doi.org/10.3390/molecules23051066] [PMID: 29751487]
[19]
Ye, Z.; Wang, X.; Mao, S.; Zhang, J.; Lin, H. Transfer learning improves prediction of drug-drug interactions for drug pairs with few common target proteins. Sci. Rep., 2019, 9(1), 1-11.
[PMID: 30626917]
[20]
Available From: http://ddinter.scbdd.com/
[21]
Gu, Z.; Luo, X.; Chen, J.; Deng, M.; Lai, L. Hierarchical graph transformer with contrastive learning for protein function prediction. Bioinformatics, 2023, 39(7), 410.
[http://dx.doi.org/10.1093/bioinformatics/btad410] [PMID: 37369035]
[22]
Ju, W.; Luo, X.; Qu, M.; Wang, Y.; Chen, C.; Deng, M.; Hua, X.; Zhang, M. TGNN: A joint semi-supervised framework for graph-level classification. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, pp. , 2122-2128.2022
[http://dx.doi.org/10.24963/ijcai.2022/295]
[23]
Yin, N.; Shen, L.; Wang, M.; Lan, L.; Ma, Z.; Chen, C.; Hua, X. CoCo: A coupled contrastive framework for unsupervised domain adaptive graph classification. Proceedings of the 40th International Conference on Machine Learning.,
[24]
Al-Rabeah, M.H.; Lakizadeh, A. Prediction of drug-drug interaction events using graph neural networks based feature extraction. Sci. Rep., 2022, 12(1), 15590.
[http://dx.doi.org/10.1038/s41598-022-19999-4] [PMID: 36114278]
[25]
Lyu, T.; Gao, J.; Tian, L.; Li, Z.; Zhang, P.; Zhang, J. MDNN: A multimodal deep neural network for predicting drug-drug interaction events. .In IJCAI, pp, , 3536-3542.2021
[http://dx.doi.org/10.24963/ijcai.2021/487]
[26]
Zhang, C.; Lu, Y.; Zang, T. CNN-DDI: A learning-based method for predicting drug–drug interactions using convolution neural networks. BMC Bioinformatics, 2022, 23(S1)(1), 88.
[http://dx.doi.org/10.1186/s12859-022-04612-2] [PMID: 35255808]
[27]
Liu, S. Enhancing Drug-Drug Interaction Prediction Using Deep Attention Neural Networks; Cold Spring Harbor Laboratory, 2021.
[http://dx.doi.org/10.1101/2021.03.16.435553]