Chemical Composition, In vitro and In silico Evaluation of Essential Oil Extracted from Mentha Piperita L. for Lung Cancer

Page: [3018 - 3029] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Mentha piperita, a naturally occurring herb, is utilized in medicinal formulations. It possesses abundant bioactive elements, including flavonoids and phenolic acid compounds,that exhibit various properties such as antioxidants, anti-inflammatory and anti-cancer.

Objective: In the present study, chemical constituents of essential oil extracted from Mentha piperita were analyzed and identified through GC-MS. In vitro antiproliferative activity was performed on A549 lung cancer cell line lines. In silico study was conducted by Schrodinger’s Maestro’s software to identify chemical constituents in the plant as potential EGFR (Epidermal Growth Factor Receptors) inhibitors.

Methods: Hydro-distilled essential oil was analyzed by GC-MS to identify chemical components based on the retention index and mass fragmentation pattern, which was then tested for its antiproliferative activity by MTT assay against human lung cancer cell lines. All the identified constituents were investigated in silico for their affinity towards EGFR (Epidermal Growth Factor Receptors).

Result: A total of thirty constituents were identified where D-carvone (56.69%), L-limonene (12.36%), squalene (3.36%), cis-carveol (2.93%), and α-amorphene (2.36%) were observed as major constituents of the essential oil. The essential mentha oil also exhibited antiproliferative activity against lung cancer cell lines with an IC50 value of 86.05 µg/ml. Furthermore, from the in silico study, five constituents were identified to have a better affinity for EGFR (Epidermal Growth Factor Receptors) than that of the standard drug Osimertinib.

Conclusion: In the present study, the aerial part of the plant Mentha piperita was hydrodistilled.Thirty phytoconstituents were identified through GC-MS data. An in-silico study was performed using Schrodinger software, and a further in vitro study was performed in which essential oil showedgood antiproliferative activity against the A549 cancer cell line.

[1]
Yuan, M.; Zhao, Y.; Arkenau, H.T.; Lao, T.; Chu, L.; Xu, Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct. Target. Ther., 2022, 7(1), 187.
[http://dx.doi.org/10.1038/s41392-022-01013-y] [PMID: 35705538]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Li, W.; Liu, J.B.; Hou, L.K.; Yu, F.; Zhang, J.; Wu, W.; Tang, X.M.; Sun, F.; Lu, H.M.; Deng, J.; Bai, J.; Li, J.; Wu, C.Y.; Lin, Q.L.; Lv, Z.W.; Wang, G.R.; Jiang, G.X.; Ma, Y.S.; Fu, D. Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol. Cancer, 2022, 21(1), 25.
[http://dx.doi.org/10.1186/s12943-022-01505-z] [PMID: 35057806]
[4]
Mahendran, G.; Verma, S.K.; Rahman, L.U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol., 2021, 278, 114266.
[http://dx.doi.org/10.1016/j.jep.2021.114266] [PMID: 34087400]
[5]
Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3149362] [PMID: 29765461]
[6]
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(4), 9-15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[7]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[8]
Midha, A.; Dearden, S.; McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res., 2015, 5(9), 2892-2911.
[PMID: 26609494]
[9]
Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W.C.; Gray, J.E.; Lee, S.M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S. Osimertinib in untreated EGFR: Mutated advanced non–small-cell lung cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[10]
Salama, Y.; Jaradat, N.; Hattori, K.; Heissig, B. Aloysia Citrodora essential oil inhibits melanoma cell growth and migration by targeting HB-EGF-EGFR signaling. Int. J. Mol. Sci., 2021, 22(15), 8151.
[http://dx.doi.org/10.3390/ijms22158151] [PMID: 34360915]
[11]
Yilmaztekin, M.; Lević, S.; Kalušević, A.; Cam, M.; Bugarski, B.; Rakić, V.; Pavlović, V.; Nedović, V. Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. J. Microencapsul., 2019, 36(2), 109-119.
[http://dx.doi.org/10.1080/02652048.2019.1607596] [PMID: 30982381]
[12]
Kalemba, D.; Synowiec, A. Agrobiological interactions of essential oils of two menthol mints: Mentha piperita and mentha arvensis. Molecules, 2020, 25(1), 59.
[13]
Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Abdallah, E.M.; Assaggaf, H.; Bakrim, S.; Alshahrani, M.M.; Awadh, A.A.A.; Qasem, A.; Attar, A.; Lee, L.H.; Bouyahya, A.; Goh, K.W.; Ming, L.C.; Mrabti, H.N. Phytochemical variability, In Vitro and In Vivo biological investigations, and In Silico antibacterial mechanisms of Mentha piperita essential oils collected from two different regions in morocco. Foods, 2022, 11(21), 3466.
[http://dx.doi.org/10.3390/foods11213466] [PMID: 36360079]
[14]
Mogosan, C.; Vostinaru, O.; Oprean, R.; Heghes, C.; Filip, L.; Balica, G.; Moldovan, R. A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of mentha cultivated in romania. Molecules, 2017, 22(2), 263.
[http://dx.doi.org/10.3390/molecules22020263] [PMID: 28208614]
[15]
Iqhrammullah, M.; Rizki, D.R.; Purnama, A.; Duta, T.F.; Harapan, H.; Idroes, R.; Ginting, B. Antiviral molecular targets of essential oils against SARS-CoV-2: A systematic review. Molecules, 2023, 25(1)
[http://dx.doi.org/10.3390/scipharm91010015]
[16]
Alamgeer Asif, H.; Chohan, T.A.; Irfan, H.M.; Asim, M.H.; Bukhari, S.N.A.; Younis, W.; Althobaiti, Y.S.; Ullah, A.; Khan, A.Q.; Hakami, A.Y. Ex vivo, in vitro, and in silico approaches to unveil the mechanisms underlying vasorelaxation effect of Mentha Longifolia (L.) in porcine coronary artery. Biomed. Pharmacother., 2022, 153, 113298.
[17]
Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.): A review. Phytother. Res., 2020, 34(9), 2088-2139.
[http://dx.doi.org/10.1002/ptr.6664] [PMID: 32173933]
[18]
Alsaraf, S.; Hadi, Z.; Akhtar, M.J.; Khan, S.A. Chemical profiling, cytotoxic and antioxidant activity of volatile oil isolated from the mint (Mentha spicata L.,) grown in Oman. Biocatal. Agric. Biotechnol., 2021, 34, 102034.
[http://dx.doi.org/10.1016/j.bcab.2021.102034]
[19]
Nickavar, B.; Nickavar, A. Compositional analysis of essential oils from two mentha species and in silico study on their major volatile constituents against polycystic ovary syndrome. Lett. Drug Des. Discov., 2023, 20(2), 201-212.
[http://dx.doi.org/10.2174/1570180819666220512140651]
[20]
Mondal, M.; Quispe, C.; Sarkar, C.; Bepari, T.C.; Alam, M.J.; Saha, S.; Ray, P.; Rahim, M.A.; Islam, M.T.; Setzer, W.N.; Salehi, B.; Ahmadi, M.; Abdalla, M.; Sharifi-Rad, J.; Kundu, S.K. Analgesic and anti-inflammatory potential of essential oil of eucalyptuscamaldulensis leaf: In Vivo and in Silico studies. Nat. Prod. Commun., 2021, 16(4), 1934578X211007634.
[21]
Manh, H.D.; Tuyet, O.T. Larvicidal and repellent activity of mentha arvensis L. essential oil against aedes aegypti. Insects, 2020, 11(3)
[22]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[23]
Saini, A.; Kumar, A.; Jangid, K.; Kumar, V.; Jaitak, V. Identification of terpenoids as dihydropteroate synthase and dihydrofolate reductase inhibitors through structure-based virtual screening and molecular dynamic simulations. J. Biomol. Struct. Dyn., 2023, 1-19.
[http://dx.doi.org/10.1080/07391102.2023.2203249] [PMID: 37173829]
[24]
Srief, M.; Bani, M.; Mokrani, E.H.; Mennai, I.; Hamdi, M.; Boumechhour, A.; Abou Mustapha, M.; Derdour, M.; Kerkatou, M.; El-Shazly, M.; Bensouici, C.; Nieto, G.; Akkal, S. Evaluation of In Vitro and In Silico anti-alzheimer potential of nonpolar extracts and essential oil from mentha piperita. Foods, 2023, 12(1)
[http://dx.doi.org/10.3390/foods12010190]
[25]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[26]
P, A.A.; Kumar, A.; Jangid, K.; Kumar, V.; Jaitak, V. Structurebased virtual screening and molecular dynamic simulation approach for the identification of terpenoids as potential DPP-4 inhibitors. Curr Comput Aided Drug Des, 2023.
[27]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[28]
Yong, W.T.L.; Ades, P.K.; Goodger, J.Q.D.; Bossinger, G.; Runa, F.A.; Sandhu, K.S.; Tibbits, J.F.G. Using essential oil composition to discriminate between myrtle rust phenotypes in Eucalyptus globulus and Eucalyptus obliqua. Ind. Crops Prod., 2019, 140, 111595.
[http://dx.doi.org/10.1016/j.indcrop.2019.111595]
[29]
Abd-Rabou, A.A.; Edris, A.E. Frankincense essential oil nanoemulsion specifically induces lung cancer apoptosis and inhibits survival pathways. Cancer Nanotechnol., 2022, 13(1), 22.
[http://dx.doi.org/10.1186/s12645-022-00128-9]
[30]
Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther., 2018, 11, 1833-1847.
[http://dx.doi.org/10.2147/OTT.S155716] [PMID: 29670359]
[31]
Ghannay, S. In Vitro and In Silico screening of anti-vibrio spp., antibiofilm, antioxidant and anti-quorum sensing activities of cuminum cyminum L. Volatile Oil. Plants, 2022, 11(17)
[32]
Carlisle, J.W.; Ramalingam, S.S. Role of osimertinib in the treatment of EGFR-mutation positive non-small-cell lung cancer. Future Oncol., 2019, 15(8), 805-816.
[http://dx.doi.org/10.2217/fon-2018-0626] [PMID: 30657347]
[33]
Lexa, K.W.; Dolghih, E.; Jacobson, M.P. A structure-based model for predicting serum albumin binding. PLoS One, 2014, 9(4), e93323.
[http://dx.doi.org/10.1371/journal.pone.0093323] [PMID: 24691448]
[34]
Godschalk, F.; Genheden, S.; Söderhjelm, P.; Ryde, U. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys. Chem. Chem. Phys., 2013, 15(20), 7731-7739.
[http://dx.doi.org/10.1039/c3cp00116d] [PMID: 23595060]
[35]
Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res., 2019, 47(W1), W322-W330.
[http://dx.doi.org/10.1093/nar/gkz397] [PMID: 31106357]
[36]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]