Uncovering the Biological Applications of Cinnamic Acid Derivatives: A Patent Review

Page: [2828 - 2837] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Cinnamic acid, derived from Cinnamomum cassia, is a natural compound known for its wide-ranging therapeutic properties and minimal toxicity. Extensive research has demonstrated the diverse biological activities displayed by cinnamic acid derivatives, encompassing their potential as agents against cancer, diabetes, microbial infections, tuberculosis, malaria, and more.

Objective: This review aims to provide an overview of the latest applications detailing the biological activity of cinnamic acid derivatives, as documented in patents.

Methods: The published patent data underwent a prior screening and selection process based on their relevance and primary focus: the biological activities of cinnamic acid derivatives as potential drugs. Espacenet, USPTO, and Google Patents were used for this selection.

Results: Cinnamic acid derivatives demonstrate a range of activities, including anticancer, antibacterial, anti-inflammatory, analgesic, anticholinesterase, and other properties. These biological activities were investigated across different derivatives, emphasizing their pharmacological potential when compared to reference compounds.

Conclusions: Despite several patents have explored the biological properties of cinnamic acid derivatives, there has been a lack of a comprehensive review dedicated to this subject. Accordingly, this review aims to facilitate the discovery of new and diverse potential drugs with various therapeutic profiles.

[1]
Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int., 2011, 44(2), 530-536.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[2]
Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and Health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[3]
Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Garg, S.; Pandey, A.; Sharma, S. Cinnamon: A pharmacological review. Int. J. Adv. Sci. Res., 2010, 1(02), 19-23.
[4]
Badnale, A.B.; Sarukh, V.S.; Nikam, Y.P.; Supekar, A.V.; Khandagale, S.S. A review on potential medicinal herbs as health promoters. J. Drug Deliv. Ther., 2022, 12(3-S), 225-229.
[http://dx.doi.org/10.22270/jddt.v12i3-S.5496]
[5]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[6]
Zhao, M.; Qi, Z.; Chen, F.; Yue, X. Kinetics of non-isothermal decomposition of cinnamic acid. Russ. J. Phys. Chem. A. Focus Chem., 2014, 88(7), 1081-1084.
[http://dx.doi.org/10.1134/S0036024414070231]
[7]
Stanisgaw, J.; Rosochacki, Z. In vitro evaluation of biological activity of cinnamic, caffeic, ferulic and chlorogenic acids with use of Escherichia coli K-12 RECA: GFP biosensor strain. Drug Res., 2017, 2(4), 6-13.
[8]
Asami, T.; Nakagawa, Y. Preface to the Special Issue: Brief review of plant hormones and their utilization in agriculture. J. Pestic. Sci., 2018, 43(3), 154-158.
[http://dx.doi.org/10.1584/jpestics.M18-02] [PMID: 30369825]
[9]
Roller, S.; Seedhar, P. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4o and 8oC. Lett. Appl. Microbiol., 2002, 35(5), 390-394.
[http://dx.doi.org/10.1046/j.1472-765X.2002.01209.x] [PMID: 12390487]
[10]
Song, F.; Li, H.; Sun, J.; Wang, S. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J. Ethnopharmacol., 2013, 150(1), 125-130.
[http://dx.doi.org/10.1016/j.jep.2013.08.019] [PMID: 24001892]
[11]
Ye, H.; Zou, T.; Jiang, X.; Lin, X.; Cai, W. Cinnamic acid reduces inflammation and apoptosis in necrotizing enterocolitis. Curr. Top. Nutraceutical Res., 2021, 20(1), 70-75.
[http://dx.doi.org/10.37290/ctnr2641-452X.20:70-75]
[12]
Hong, S.; Cha, K.H.; Park, J.; Jung, D.S.; Choi, J.H.; Yoo, G.; Nho, C.W. Cinnamic acid suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. J. Nutr. Biochem., 2022, 101, 108900.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108900] [PMID: 34748919]
[13]
Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 2015, 22(2), 297-300.
[http://dx.doi.org/10.1016/j.phymed.2015.01.003] [PMID: 25765836]
[14]
Lee, A.G.; Kang, S.; Im, S.; Pak, Y.K. Cinnamic acid attenuates peripheral and hypothalamic inflammation in high-fat diet-induced obese mice. Pharmaceutics, 2022, 14(8), 1675.
[http://dx.doi.org/10.3390/pharmaceutics14081675] [PMID: 36015301]
[15]
Guo, Y.; Lv, J.; Zhao, Q.; Dong, Y.; Dong, K. Cinnamic acid increased the incidence of Fusarium wilt by increasing the pathogenicity of Fusarium oxysporum and reducing the physiological and biochemical resistance of faba bean, which was alleviated by intercropping with wheat. Front. Plant Sci., 2020, 11, 608389.
[http://dx.doi.org/10.3389/fpls.2020.608389] [PMID: 33381139]
[16]
Steenackers, W.; El Houari, I.; Baekelandt, A.; Witvrouw, K.; Dhondt, S.; Leroux, O.; Gonzalez, N.; Corneillie, S.; Cesarino, I.; Inzé, D.; Boerjan, W.; Vanholme, B. cis-Cinnamic acid is a natural plant growth-promoting compound. J. Exp. Bot., 2019, 70(21), 6293-6304.
[http://dx.doi.org/10.1093/jxb/erz392] [PMID: 31504728]
[17]
Cai, R.; Miao, M.; Yue, T.; Zhang, Y.; Cui, L.; Wang, Z.; Yuan, Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int. J. Food Sci. Technol., 2019, 54(5), 1697-1705.
[http://dx.doi.org/10.1111/ijfs.14051]
[18]
Anlar, H.G.; Bacanli, M.; Çal, T.; Aydin, S.; Ari, N.; Ündeğer Bucurgat, Ü.; Başaran, A.A.; Başaran, A.N. Effects of cinnamic acid on complications of diabetes. Turk. J. Med. Sci., 2018, 48(1), 168-177.
[http://dx.doi.org/10.3906/sag-1708-8] [PMID: 29479980]
[19]
Kumar, N.; Parle, A. Cinnamic acid derivatives: An ERA. J. Pharm. Innov., 2019, 8(5), 580-595.
[20]
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci., 2020, 21(16), 5712.
[http://dx.doi.org/10.3390/ijms21165712] [PMID: 32784935]
[21]
França, S.B.; Correia, P.R.S.; Castro, I.B.D.; Silva Júnior, E.F.; Barros, M.E.S.B.; Lima, D.J.P. Synthesis, applications and structure-activity relationship (SAR) of cinnamic acid derivatives: A review. Research. Soc. Dev., 2021, 10(1), e28010111691-e28010111691.
[http://dx.doi.org/10.33448/rsd-v10i1.11691]
[22]
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem., 2011, 18(11), 1672-1703.
[http://dx.doi.org/10.2174/092986711795471347] [PMID: 21434850]
[23]
Feng, L.S.; Cheng, J.B.; Su, W.Q.; Li, H.Z.; Xiao, T.; Chen, D.A.; Zhang, Z.L. Cinnamic acid hybrids as anticancer agents: A mini‐review. Arch. Pharm., 2022, 355(7), 2200052.
[http://dx.doi.org/10.1002/ardp.202200052] [PMID: 35419808]
[24]
Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 2017, 9(2), 163.
[http://dx.doi.org/10.3390/nu9020163] [PMID: 28230764]
[25]
Guzman, J. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 2014, 19(12), 19292-19349.
[http://dx.doi.org/10.3390/molecules191219292] [PMID: 25429559]
[26]
De, P.; De, K.; Veau, D.; Bedos-Belval, F.; Chassaing, S.; Baltas, M. Recent advances in the development of cinnamic-like derivatives as antituberculosis agents. Expert Opin Ther Pat., 2012, 22(2), 155-168.
[27]
Prithwiraj, D.; Bedos-Belval, F.; Vanucci-Bacque, C.; Michel, B. Cinnamic acid derivatives in tuberculosis, malaria and cardiovascular diseases-a review. Curr. Org. Chem., 2012, 16(6), 747-768.
[http://dx.doi.org/10.2174/138527212799958020]
[28]
Dy, G.K.; Adjei, A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin., 2013, 63(4), 249-279.
[http://dx.doi.org/10.3322/caac.21184] [PMID: 23716430]
[29]
Donnenberg, V.S.; Donnenberg, A.D. Multiple drug resistance in cancer revisited: The cancer stem cell hypothesis. J. Clin. Pharmacol., 2005, 45(8), 872-877.
[http://dx.doi.org/10.1177/0091270005276905] [PMID: 16027397]
[30]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[31]
An, X.; Tiwari, A.K.; Sun, Y.; Ding, P.R.; Ashby, C.R., Jr; Chen, Z.S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk. Res., 2010, 34(10), 1255-1268.
[http://dx.doi.org/10.1016/j.leukres.2010.04.016] [PMID: 20537386]
[32]
Yao, R; Lu, X; Ruan, B; Deng, S; Ren, J; Zhang, Y Cinnamyl amide imatinib ramification as well as preparation method and application thereof. CN Patent 103121990A, 2013.
[33]
Liang, C.; Tian, L.; Tang, Y.; Chang, M.; Shi, K.; Ju, X.; Liu, Y.; Wen, L.; Li, H.; Wang, X. 13-hydroxysparteine cinnamic acid derivatives with anti-tumor activities and a method of preparing the same. US Patent 10233183B1, 2019.
[34]
Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep., 2002, 19(6), 719-741.
[http://dx.doi.org/10.1039/b104969k] [PMID: 12521266]
[35]
Liang, C; Ju, W; Jia, M; Tian, D; Liu, K; Wang, W; Hui, N; Sun, H. A kind of Bergenin azepine cinnamate derivative compound and its synthetic method having anti-tumor activity. CN Patent 106632379B, 2019.
[36]
Liang, C.; Pei, S.; Ju, W.; Jia, M.; Tian, D.; Tang, Y.; Mao, G. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids. Eur. J. Med. Chem., 2017, 133, 319-328.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.053] [PMID: 28395218]
[37]
Venkateswara Rao, B.; Pavan Kumar, P.; Ramalingam, V.; Karthik, G.; Andugulapati, S.B.; Suresh Babu, K. Piperazine tethered bergenin heterocyclic hybrids: design, synthesis, anticancer activity, and molecular docking studies. RSC Medicinal Chemistry, 2022, 13(8), 978-985.
[http://dx.doi.org/10.1039/D2MD00116K] [PMID: 36092140]
[38]
Zhang, F. Tris(o-bromobenzyl)tin phenyl acrylate and preparation method and application. CN Patent 109134528A, 2019.
[39]
Okoro, H.K.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J.; Snyman, R.G. Sources, Environmental levels and toxicity of organotin in marine environment–a review. Asian J. Chem., 2011, 23(2), 473-482.
[40]
Niu, L.; Li, Y.; Li, Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorg. Chim. Acta, 2014, 423, 2-13.
[http://dx.doi.org/10.1016/j.ica.2014.05.007]
[41]
Arjmand, F.; Parveen, S.; Tabassum, S.; Pettinari, C. Organo-tin antitumor compounds: Their present status in drug development and future perspectives. Inorg. Chim. Acta, 2014, 423, 26-37.
[http://dx.doi.org/10.1016/j.ica.2014.07.066]
[42]
Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 2020, 12(12), 3313.
[http://dx.doi.org/10.3390/w12123313]
[43]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[44]
Porto, V.A.; dos Santos Correia, P.R.; Porto, R.S. Synthesis and antibacterial activity of 2-mercaptobenzimidazole derivatives: A literature review. Rev. Virtual Quim., 2021, 13(6), 1457-1466.
[http://dx.doi.org/10.21577/1984-6835.20210081]
[45]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[46]
Reboredo-Rodríguez, P.; González-Barreiro, C.; Martínez-Carballo, E.; Cambeiro-Pérez, N.; Rial-Otero, R.; Figueiredo-González, M.; Cancho-Grande, B. Applicability of an in-vitro digestion model to assess the bioaccessibility of phenolic compounds from olive-related products. Molecules, 2021, 26(21), 6667.
[http://dx.doi.org/10.3390/molecules26216667] [PMID: 34771074]
[47]
Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; Beccari, T.; Michelini, S. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol., 2020, 309, 29-33.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.016] [PMID: 31884046]
[48]
Wan, J.; Zhang, J.; Kong, C.; Jin, Y.; Fan, M.; Li, H.; Zhao, Q.; Yang, D. Method of preparing hydroxytyrosol cinnamic acid ester with antioxidant and antibacterial activities. US Patent 11427526B2, 2022.
[49]
Liang, C.; Yang, W.; Zhao, Q.; Xin, L.; Li, J.; Yang, D.; Bian, R.; Zhang, J.; Zhao, Y.; Li, H.; Tian, B.; Wang, Y.; Qi, L.; Mao, G. Pleuromutilin (E)-4-(1-imidazoylmethyl)cinnamic acid ester with antidrug resistant bacteria activity and a method of preparing the same. US Patent 11510905B1, 2022.
[50]
Stojković, D.; Petrović, J.; Carević, T.; Soković, M.; Liaras, K. Synthetic and semisynthetic compounds as antibacterials targeting virulence traits in resistant strains: A narrative updated review. Antibiotics , 2023, 12(6), 963.
[http://dx.doi.org/10.3390/antibiotics12060963] [PMID: 37370282]
[51]
Muthusamy, S.; Udhayabaskar, S.; Udayakumar, G.P.; Kirthikaa, G.B.; Sivarajasekar, N. Properties and applications of natural pigments produced from different biological sources—a concise review. In: Sustainable Development in Energy and Environment; , 2020; pp. 105-119.
[http://dx.doi.org/10.1007/978-981-15-4638-9_9]
[52]
Li, H; Hui, N; Liang, C; Ju, X; Qiao, G; Li, J; He, Y; Tian, B; Wang, Y; Xu, J; Qi, L; Yang, D; Zhao, Q; Li, Y; Zeng, Q; Mao, G; Wang, L Cinnamyl alcohol cassic acid ester with antibacterial activity and a method of preparing the same. Patent US10947182B1, 2021.
[53]
Nelson, C.; Buttrick, B.; Isoherranen, N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr. Top. Med. Chem., 2013, 13(12), 1402-1428.
[http://dx.doi.org/10.2174/1568026611313120004] [PMID: 23688132]
[54]
Bushue, N.; Wan, Y.J.Y. Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev., 2010, 62(13), 1285-1298.
[http://dx.doi.org/10.1016/j.addr.2010.07.003] [PMID: 20654663]
[55]
Tang, Y.; Chang, M.; Qi, H.; Zhou, P.; Yuan, Z.; Yao, W.; Qiao, G.; Tian, B.; Li, J. Method of preparing a cinnamyl alcohol retinoic acid ester with antioxidant and antibacterial activities. US Patent 11072575B1, 2021.
[56]
de Cássia da Silveira e Sá R.; Andrade, L.; de Sousa, D. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[57]
Porto, R.S. Computational investigation of Schiff bases from tryptamine as COX-2 inhibitors with potential anti-inflammatory activity. I. Inf. Knowl. Manag, 2022, 3(1), e13081-e13081.
[http://dx.doi.org/10.20952/jrks3113081]
[58]
Cumpstey, A.; Feelisch, M. Free radicals in inflammation. In: Inflammation: from molecular and cellular mechanisms to the clinic; , 2017; pp. 695-726.
[http://dx.doi.org/10.1002/9783527692156.ch27]
[59]
Jeon, JK; Seo, Y Pipelongumine and its derivatives and producing method thereof. KR Patent 101633655B1, 2016.
[60]
Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; Valussi, M.; Tumer, T.B.; Monzote Fidalgo, L.; Martorell, M.; Setzer, W.N. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules, 2019, 24(7), 1364.
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[61]
Zhang, X.; Xiao, Z.; Xu, H. A review of the total syntheses of triptolide. Beilstein J. Org. Chem., 2019, 15(1), 1984-1995.
[http://dx.doi.org/10.3762/bjoc.15.194] [PMID: 31501665]
[62]
Gao, J.; Zhang, Y.; Liu, X.; Wu, X.; Huang, L.; Gao, W. Triptolide: Pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics, 2021, 11(15), 7199-7221.
[http://dx.doi.org/10.7150/thno.57745] [PMID: 34158845]
[63]
Zhang, D; Hou, Q; Wei, B; Wang, C; Yuan, S; Li, C; Bai, J Triptolide derivatives, and preparation methods, medicinal composition and uses thereof. CN Patent 102786576B, 2015.
[64]
Gatchel, R.J.; Peng, Y.B.; Peters, M.L.; Fuchs, P.N.; Turk, D.C. The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychol. Bull., 2007, 133(4), 581-624.
[http://dx.doi.org/10.1037/0033-2909.133.4.581] [PMID: 17592957]
[65]
Penprase, B.; Brunetto, E.; Dahmani, E.; Forthoffer, J.J.; Kapoor, S. The efficacy of preemptive analgesia for postoperative pain control: A systematic review of the literature. AORN J., 2015, 101(1), 94-105.e8.
[http://dx.doi.org/10.1016/j.aorn.2014.01.030] [PMID: 25537330]
[66]
Ookubo, T; Nakamura, K; Nakazawa, Y; Nanba, H; Yoshida, H Cinnamic acid amide derivative. CN Patent 104884426A, 2015.
[67]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[68]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[69]
Sang, Z; Liu, W; Yu, L; Ma, Q; Chen, C; Pan, W; Li, T; Gao, L. 4- cyclamine alkoxy-3-methoxyl cinnamic acid benzamide compound, preparation method and application of compound. CN Patent 105732479B, 2018.
[70]
Shuping, D.S.S.; Eloff, J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 120-127.
[http://dx.doi.org/10.21010/ajtcam.v14i4.14] [PMID: 28638874]
[71]
Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[72]
Pagniez, F.; Lebouvier, N.; Na, Y.M.; Ourliac-Garnier, I.; Picot, C.; Le Borgne, M.; Le Pape, P. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 398-403.
[http://dx.doi.org/10.1080/14756366.2019.1705292] [PMID: 31899979]
[73]
Li, A; Shi, Y Application of cinnamic acid derivative in prevention and treatment of agricultural pathogenic fungi. CN Patent 115413658A, 2022.
[74]
Bañuls, A.L.; Hide, M.; Prugnolle, F. Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv. Parasitol., 2007, 64, 1-458.
[http://dx.doi.org/10.1016/S0065-308X(06)64001-3] [PMID: 17499100]
[75]
Postigo, J.A.R. Leishmaniasis in the world health organization eastern mediterranean region. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 1), S62-S65.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.06.023] [PMID: 20728317]
[76]
Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother., 2004, 10(6), 307-315.
[http://dx.doi.org/10.1007/s10156-004-0348-9] [PMID: 15614453]
[77]
Aguiar, AR; Tomaz, DC; Bressan, GC; Fietto, JLR; De Souza, LA; Dos Santos, MAV; Rodrigues, MP; Teixeira, RR; Onofre, TS; Menezes, WA Compositions based on cinnamic acid derivative with leishmanicidal activity and use. BR Patent 102019019344A2, 2021.
[78]
Solano, F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules, 2020, 25(7), 1537.
[http://dx.doi.org/10.3390/molecules25071537] [PMID: 32230973]
[79]
Badejo, O.; Skaldina, O.; Gilev, A.; Sorvari, J. Benefits of insect colours: A review from social insect studies. Oecologia, 2020, 194(1-2), 27-40.
[http://dx.doi.org/10.1007/s00442-020-04738-1] [PMID: 32876763]
[80]
Wang, R.F.; Ko, D.; Friedman, B.J.; Lim, H.W.; Mohammad, T.F. Disorders of hyperpigmentation. Part I. Pathogenesis and clinical features of common pigmentary disorders. J. Am. Acad. Dermatol., 2023, 88(2), 271-288.
[http://dx.doi.org/10.1016/j.jaad.2022.01.051] [PMID: 36933930]
[81]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[82]
Gillbro, J.M.; Olsson, M.J. The melanogenesis and mechanisms of skin-lightening agents - existing and new approaches. Int. J. Cosmet. Sci., 2011, 33(3), 210-221.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00616.x] [PMID: 21265866]
[83]
Xu, Q; Tan, J; Zeng, L; Chen, Y; Wang, S Application of diterpene compound in preparation of tyrosinase inhibitor. CN Patent 111135159B, 2021.
[84]
Gubareva, L.V.; Kaiser, L.; Hayden, F.G. Influenza virus neuraminidase inhibitors. Lancet, 2000, 355(9206), 827-835.
[http://dx.doi.org/10.1016/S0140-6736(99)11433-8] [PMID: 10711940]
[85]
Kerry, R.G.; Malik, S.; Redda, Y.T.; Sahoo, S.; Patra, J.K.; Majhi, S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine , 2019, 18, 196-220.
[http://dx.doi.org/10.1016/j.nano.2019.03.004] [PMID: 30904587]
[86]
Yin, Y; Lu, C; Zhang, H; Meng, F; Pan, J; Sun, Y; Duan, Y; Sun, Y; Zhao, L; Wang, Y; Zhy, D Aminoalcohol neuraminidase inhibitors, and preparation method thereof. CN Patent 106946725A, 2019.