Exploring the Action Mechanism and Validation of the Key Pathways of Dendrobium officinale Throat-clearing Formula for the Treatment of Chronic Pharyngitis Based on Network Pharmacology

Page: [479 - 496] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Aim: This study investigated the molecular action mechanism of a compound herb, also known as the Dendrobium officinale throat-clearing formula (QYF), by using network pharmacology and animal experimental validation methods to treat chronic pharyngitis (CP).

Methods: The active ingredients and disease targets of QYF were determined by searching the Batman-TCM and GeneCards databases. Subsequently, the drug-active ingredient-target and protein-protein interaction networks were constructed, and the core targets were obtained through network topology. The Metascape database was screened, and the core targets were enriched with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes.

Results: In total, 1403 and 241 potential targets for drugs and diseases, respectively, and 81 intersecting targets were yielded. The core targets included TNF, IL-6, and IL-1β, and the core pathways included PI3K-Akt. The QYF treatment group exhibited effectively improved general signs, enhanced anti-inflammatory ability in vitro, reduced serum and tissue expressions of TNF- α, IL-6, and IL-1β inflammatory factors, and decreased blood LPS levels and Myd88, TLR4, PI3K, Akt, and NF-κB p65 protein expression in the tissues.

Conclusion: QYF could inhibit LPS production, which regulated the expression of the TLR4/PI3K/Akt/NF-κB signaling pathway to suppress the expression of the related inflammatory factors (i.e., TNF-α, IL-6, and IL-1β), thereby alleviating the CP process.

Graphical Abstract

[1]
Jain, N.; Lodha, R.; Kabra, S.K. Upper respiratory tract infections. Indian J. Pediatr., 2001, 68(12), 1135-1138.
[http://dx.doi.org/10.1007/BF02722930] [PMID: 11838568]
[2]
Ji, S.; Xu, F.; Zhu, R.; Wang, C.; Guo, D.; Jiang, Y. Mechanism of yinqin oral liquid in the treatment of chronic pharyngitis based on network pharmacology. Drug Des. Devel. Ther., 2021, 15, 4413-4421.
[http://dx.doi.org/10.2147/DDDT.S324139] [PMID: 34707348]
[3]
Li, Z.; Huang, J.; Hu, Z. Screening and diagnosis of chronic pharyngitis based on deep learning. Int. J. Environ. Res. Public Health, 2019, 16(10), 1688.
[http://dx.doi.org/10.3390/ijerph16101688] [PMID: 31091759]
[4]
Zhang, H.; Zhang, J.; Zhang, Q.J.; Pei, S.G.; Liu, Y.M.; Yang, Y.H.; Zhu, H.Z. A review of misdiagnosed diseases in chronic pharyngitis. China Modern Physician, 2012, 50(27), 13-14.
[5]
Leone, C.A.; Caruso, A.A.; Allocca, V.; Barra, E.; Leone, R. Pilot study on the effects of high molecular weight sodium hyaluronate in the treatment of chronic pharyngitis. Int. J. Immunopathol. Pharmacol., 2015, 28(4), 532-538.
[http://dx.doi.org/10.1177/0394632015586497] [PMID: 25990828]
[6]
Chen, X.; Lai, Y.; Song, X.; Wu, J.; Wang, L.; Zhang, H.; Liu, Z.; Wang, Y. Polysaccharides from Citrus grandis associate with luteolin relieves chronic pharyngitis by anti-inflammatory via suppressing NF-κB pathway and the polarization of M1 macrophages. Int. J. Immunopathol. Pharmacol., 2018, 32.
[http://dx.doi.org/10.1177/2058738418780593] [PMID: 29877106]
[7]
Sykes, E.A.; Wu, V.; Beyea, M.M.; Simpson, M.T.W.; Beyea, J.A. Pharyngitis: Approach to diagnosis and treatment. Can. Fam. Physician, 2020, 66(4), 251-257.
[PMID: 32273409]
[8]
Wang, X.; Bi, Y.; Liu, G.; Wang, W.; Cui, H. Smoking and alcohol consumption with the risk of 11 common otolaryngological diseases: a bidirectional Mendelian randomization. Eur. Arch. Otorhinutoryungol., 2023, 280(12), 5615-5623.
[9]
Olina, M.; Aluffi Valletti, P.; Pia, F.; Toso, A.; Borello, G.; Policarpo, M.; Garavelli, P.L. [Hydrological indications in the therapy of pharyngitis]. Recenti Prog. Med., 2008, 99(6), 314-321.
[PMID: 18710064]
[10]
Federspil, P. Clinical use of gentamicin in ear, nose, and throat infections. J. Infect. Dis., 1969, 119(4-5), 465-470.
[http://dx.doi.org/10.1093/infdis/119.4-5.465] [PMID: 5788735]
[11]
Murray, R.C.; Chennupati, S.K. Chronic streptococcal and non-streptococcal pharyngitis. Infect. Disord. Drug Targets, 2012, 12(4), 281-285.
[http://dx.doi.org/10.2174/187152612801319311] [PMID: 22338589]
[12]
Renner, B.; Mueller, C.A.; Shephard, A. Environmental and non-infectious factors in the aetiology of pharyngitis (sore throat). Inflamm. Res., 2012, 61(10), 1041-1052.
[13]
Li, M.A.; Wang, F. [Review of acupuncture treatment for chronic pharyngitis]. Zhongguo Zhenjiu, 2010, 30(4), 349-351.
[PMID: 20568447]
[14]
Xu, C.; Yue, R.; Lv, X.; Wu, T.; Yang, M.; Chen, Y. The efficacy and safety of Banxia-Houpo-Tang for chronic pharyngitis. Medicine (Baltimore), 2020, 99(30), e19922.
[http://dx.doi.org/10.1097/MD.0000000000019922] [PMID: 32791655]
[15]
Ji, W.N.; Yan, M.Q.; Su, J.; Yu, J.J.; Chen, S.H.; Lu, G.Y.; Chen, J.Z. Study on the effect of different parts of Dendrobium ferruginum on the chronic pharyngitis model caused by the stimulation of chili water with ammonia. Chin. J. Trad. Chin. Med., 2022, 47(09), 2525-2532.
[16]
Yuan, Z.; Pan, Y.; Leng, T.; Chu, Y.; Zhang, H.; Ma, J.; Ma, X. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine. J. Pharm. Pharm. Sci., 2022, 25, 218-226.
[17]
Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in traditional chinese medicine. A narrative review. J. Trad. Chin. Med., 2022, 42(3), 479-486.
[18]
Newman, D.J. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. Adv. Pharmacol., 2020, 87, 113-158.
[http://dx.doi.org/10.1016/bs.apha.2019.07.001] [PMID: 32089231]
[19]
Liu, J.; Liu, J.; Tong, X.; Peng, W.; Wei, S.; Sun, T.; Wang, Y.; Zhang, B.; Li, W. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis. Drug Des. Devel. Ther., 2021, 15, 3255-3276.
[http://dx.doi.org/10.2147/DDDT.S319786] [PMID: 34349502]
[20]
Shi, W.; Wang, Z.; Liu, H.; Jia, Y.; Wang, Y.; Xu, X.; Zhang, Y.; Qi, X.; Hu, F.D. Study on the mechanism of Fufang E’jiao Jiang on precancerous lesions of gastric cancer based on network pharmacology and metabolomics. J. Ethnopharmacol., 2023, 304, 116030.
[http://dx.doi.org/10.1016/j.jep.2022.116030] [PMID: 36563889]
[21]
Li, Z.; Pan, H.; Yang, J.; Chen, D.; Wang, Y.; Zhang, H.; Cheng, Y. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. Phytomedicine, 2023, 108, 154545.
[http://dx.doi.org/10.1016/j.phymed.2022.154545] [PMID: 36423572]
[22]
Guo, B.; Zhao, C.; Zhang, C.; Xiao, Y.; Yan, G.; Liu, L.; Pan, H. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification. Pharmacol. Res., 2022, 175, 106000.
[http://dx.doi.org/10.1016/j.phrs.2021.106000] [PMID: 34838694]
[23]
Li, C.L.; Tan, L.H.; Wang, Y.F.; Luo, C.D.; Chen, H.B.; Lu, Q.; Li, Y.C.; Yang, X.B.; Chen, J.N.; Liu, Y.H.; Xie, J.H.; Su, Z.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. Phytomedicine, 2019, 52, 272-283.
[http://dx.doi.org/10.1016/j.phymed.2018.09.228] [PMID: 30599908]
[24]
Tsubokura, Y.; Kobayashi, T.; Oshima, Y.; Hashizume, N.; Nakai, M.; Ajimi, S.; Imatanaka, N. Effects of pentobarbital, isoflurane, or medetomidine–midazolam–butorphanol anesthesia on bronchoalveolar lavage fluid and blood chemistry in rats. J. Toxicol. Sci., 2016, 41(5), 595-604.
[http://dx.doi.org/10.2131/jts.41.595] [PMID: 27665769]
[25]
Ireka, Y.; Agustina, H.; Aziz, A.; Hernowo, B.S.; Suryanti, S. Comparison of Fixation Methods for Preservation Cytology Specimens of Cell Block Preparation Using 10% Neutral Buffer Formalin and 96% Alcohol Fixation in E-cadherin and Ki-67 Immunohistochemical Examination. Open Access Maced. J. Med. Sci., 2019, 7(19), 3139-3144.
[http://dx.doi.org/10.3889/oamjms.2019.452] [PMID: 31949505]
[26]
Zhu, W. B.; Su, F. Z.; Sun, Y. P.; Yang, B. Y.; Wang, Q. H.; Kuang, H. X. Antipharyngitis effects of syringa oblata l. ethanolic extract in acute pharyngitis rat model and anti-inflammatory effect of ir-idoids in lps-induced RAW 264.7 Cells. Evidence-based complementary and alternative medicine : eCAM, 2021, 2021, 5111752.
[27]
Zhou, G-F.; Chen, S-H.; Lv, G-Y.; Yan, M-Q. [Determination of naringenin in Dendrobium officinale by HPLC]. Zhongguo Zhongyao Zazhi, 2013, 38(4), 520-523.
[PMID: 23713276]
[28]
Zhang, Y. Study on the isolation and activity screening of watersoluble constituents from Dendrobium officinale leaves; Guangzhou University of Chinese Medicine: M.S., 2018.
[29]
Lv, Z.G.; Yang, J.; Kang, C.Z.; Li, Z.H.; Ma, Z.H.; Guo, L.P.; Wang, Y.P. UPLC-MS/MS determination and polysaccharide composition content analysis of 10 flavonoid components in Dendrobium ferruginum. Chin. J. Exper. Formul., 2017, 23(17), 47-52.
[30]
Li, Y.; Wang, C.L.; Wang, F.F.; Dong, H.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. phenolic acids and dihydroflavonoid components in Dendrobium officinale. Chin. J. Pharm., 2010, 45(13), 975-979.
[31]
Zhou, J.; Zhou, X.L.; Liang, C.Q.; Su, S.J.; Li, B.L.; Qing, Y.Y.; Wu, Y.E. Studies on the chemical composition of Dendrobium ferruginum. Chin. Herb. Med., 2015, 46(09), 1292-1295.
[32]
Chen, Y.H.; Luo, R.; Lei, S.S.; Li, B.; Zhou, F.C.; Wang, H.Y.; Chen, X.; He, X.; Wang, Y.Z.; Zhan, L.H.; Lu, T.T.; Su, J.; Yu, Q.X.; Li, B.; Lv, G.Y.; Chen, S.H. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement. Med. Ther., 2020, 20(1), 265.
[33]
Gao, H.; Liu, X.; Sun, W.; Kang, N.; Liu, Y.; Yang, S.; Xu, Q.; Wang, C.; Chen, X. Total tanshinones exhibits anti-inflammatory effects through blocking TLR4 dimerization via the MyD88 pathway. Cell Death Dis., 2017, 8(8), e3004.
[http://dx.doi.org/10.1038/cddis.2017.389] [PMID: 28817116]
[34]
Sun, X.; Chen, L.; He, Z. PI3K/Akt-Nrf2 and Anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr. Drug Metab., 2019, 20(4), 301-304.
[http://dx.doi.org/10.2174/1389200220666190227224748] [PMID: 30827233]
[35]
Xiang, M.; Liu, T.; Tian, C.; Ma, K.; Gou, J.; Huang, R.; Li, S.; Li, Q.; Xu, C.; Li, L.; Lee, C.H.; Zhang, Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol. Res., 2022, 177, 106092.
[http://dx.doi.org/10.1016/j.phrs.2022.106092] [PMID: 35066108]
[36]
Yan, W.F.; Shao, Q.H.; Zhang, D.M.; Yuan, Y.H.; Chen, N.H. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway. J. Asian Nat. Prod. Res., 2015, 17(6), 662-670.
[http://dx.doi.org/10.1080/10286020.2015.1056166] [PMID: 26235355]
[37]
Zhang, Y.; Yuan, T.; Li, Y.; Wu, N.; Dai, X. Network Pharmacology Analysis of the Mechanisms of Compound Herba Sarcandrae (Fufang Zhongjiefeng) Aerosol in Chronic Pharyngitis Treatment. Drug Des. Devel. Ther., 2021, 15, 2783-2803.
[http://dx.doi.org/10.2147/DDDT.S304708] [PMID: 34234411]
[38]
Li, C.; Wu, F.; Yuan, W.; Ding, Q.; Wang, M.; Zhang, Q.; Zhang, J.; Xing, J.; Wang, S. Systematic Review of herbal tea (a traditional chinese treatment method) in the therapy of chronic simple pharyngitis and preliminary exploration about its medication rules. Evid.-Based Complement. Alter. Med.: eCAM, 2019, 2019, 9458676.
[39]
Gong, X.; Chen, N.; Ren, K.; Jia, J.; Wei, K.; Zhang, L.; Lv, Y.; Wang, J.; Li, M. The Fruits of Siraitia grosvenorii: A Review of a Chinese Food-Medicine. Front. Pharmacol., 2019, 10, 1400.
[http://dx.doi.org/10.3389/fphar.2019.01400] [PMID: 31849659]
[40]
Krüger, K.; Töpfner, N.; Berner, R.; Windfuhr, J.; Oltrogge, J.H. Clinical Practice Guideline: Sore Throat. Dtsch. Arztebl. Int., 2021, 118(11), 188-194.
[PMID: 33602392]
[41]
Liu, Z.G.; Lin, S.H.; Miao, S.Y.; Zheng, L.; Lin, W.J.; Ma, S.Y.; Bian, X.L. A network pharmacological interpretation of the theory of “different diseases treated together” in Chinese medicine. China Pharmaceuticals, 2022, 31(13), 1-7.
[42]
Szlasa, W. Ślusarczyk, S.; Nawrot-Hadzik, I.; Abel, R.; Zalesińska, A.; Szewczyk, A.; Sauer, N.; Preissner, R.; Saczko, J.; Drąg, M.; Poręba, M.; Daczewska, M.; Kulbacka, J.; Drąg-Zalesińska, M. Betulin and Its Derivatives Reduce Inflammation and COX-2 Activity in Macrophages. Inflammation, 2023, 46(2), 573-583.
[http://dx.doi.org/10.1007/s10753-022-01756-4] [PMID: 36282372]
[43]
Tuli, H.S.; Sak, K.; Gupta, D.S.; Kaur, G.; Aggarwal, D.; Chaturvedi Parashar, N.; Choudhary, R.; Yerer, M.B.; Kaur, J.; Kumar, M.; Garg, V.K.; Sethi, G. Anti-Inflammatory and anticancer properties of birch bark-derived betulin. In: Recent Developments. Plants; Basel, Switzerland, 2021; 10, . (12)
[44]
Liu, B.; Luo, M.; Meng, D.; Pan, H.; Shen, H.; Shen, J.; Yao, M.; Xu, L. Tetrahydropalmatine exerts analgesic effects by promoting apoptosis and inhibiting the activation of glial cells in rats with inflammatory pain. Mol. Pain, 2021, 17.
[http://dx.doi.org/10.1177/17448069211042117] [PMID: 34505815]
[45]
Pundarikakshudu, K.; Shah, D.; Panchal, A.; Bhavsar, G. Anti-inflammatory activity of fenugreek (Trigonella foenum-graecum Linn) seed petroleum ether extract. Indian J. Pharmacol., 2016, 48(4), 441-444.
[http://dx.doi.org/10.4103/0253-7613.186195] [PMID: 27756958]
[46]
Nagamma, T.; Konuri, A.; Bhat, K.M.R.; Udupa, P.; Rao, G.; Nayak, Y. Prophylactic effect of Trigonella foenum-graecum L. seed extract on inflammatory markers and histopathological changes in high-fat-fed ovariectomized rats. J. Tradit. Complement. Med., 2022, 12(2), 131-140.
[http://dx.doi.org/10.1016/j.jtcme.2021.07.003] [PMID: 35528469]
[47]
Siracusa, F.; Schaltenberg, N.; Kumar, Y.; Lesker, T.R.; Steglich, B.; Liwinski, T.; Cortesi, F.; Frommann, L.; Diercks, B.P.; Bönisch, F.; Fischer, A.W.; Scognamiglio, P.; Pauly, M.J.; Casar, C.; Cohen, Y.; Pelczar, P.; Agalioti, T.; Delfs, F.; Worthmann, A.; Wahib, R.; Jagemann, B.; Mittrücker, H.W.; Kretz, O.; Guse, A.H.; Izbicki, J.R.; Lassen, K.G.; Strowig, T.; Schweizer, M.; Villablanca, E.J.; Elinav, E.; Huber, S.; Heeren, J.; Gagliani, N. Short-term dietary changes can result in mucosal and systemic immune depression. Nat. Immunol., 2023, 24(9), 1473-1486.
[http://dx.doi.org/10.1038/s41590-023-01587-x] [PMID: 37580603]
[48]
Yang, X.; Gao, X.; Du, B.; Zhao, F.; Feng, X.; Zhang, H.; Zhu, Z.; Xing, J.; Han, Z.; Tu, P.; Chai, X. Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways. J. Ethnopharmacol., 2018, 225, 234-243.
[http://dx.doi.org/10.1016/j.jep.2018.06.037] [PMID: 29981433]
[49]
Yang, M.; Wang, Y.; Patel, G.; Xue, Q.; Singor Njateng, G.S.; Cai, S.; Cheng, G.; Kai, G. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways. J. Ethnopharmacol., 2020, 261, 113105.
[http://dx.doi.org/10.1016/j.jep.2020.113105] [PMID: 32590114]
[50]
Elsayed, S.; Abdelkhalek, A.S.; Rezq, S.; Abu Kull, M.E.; Romero, D.G.; Kothayer, H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur. J. Med. Chem., 2023, 260, 115724.
[http://dx.doi.org/10.1016/j.ejmech.2023.115724] [PMID: 37611534]
[51]
Xu, M.; Hu, T.Y.; Li, D.C.; Ma, L.; Zhang, H.; Fan, J.T.; Fan, X.M.; Zeng, X.H.; Qiu, S.Q.; Liu, Z.Q.; Cheng, B.H. Yan-Hou-Qing formula attenuates ammonia-induced acute pharyngitis in rats via inhibition of NF-κB and COX-2. BMC Complement. Med. Ther., 2020, 20(1), 280.
[52]
Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF‑κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[PMID: 29115472]
[53]
Van Damme, K.F.A.; Hoste, L.; Declercq, J.; De Leeuw, E.; Maes, B.; Martens, L.; Colman, R.; Browaeys, R.; Bosteels, C.; Verwaerde, S.; Vermeulen, N.; Lameire, S.; Debeuf, N.; Deckers, J.; Stordeur, P.; Depuydt, P.; Van Braeckel, E.; Vandekerckhove, L.; Guilliams, M.; Schetters, S.T.T.; Haerynck, F.; Tavernier, S.J.; Lambrecht, B.N. A complement atlas identifies interleukin-6–dependent alternative pathway dysregulation as a key druggable feature of COVID-19. Sci. Transl. Med., 2023, 15(710), eadi0252.
[http://dx.doi.org/10.1126/scitranslmed.adi0252] [PMID: 37611083]
[54]
Yang, Y.; Zhang, Y.; Xing, X.; Xu, G.; Lin, X.; Wang, Y.; Chen, M.; Wang, C.; Zhang, B.; Han, W.; Hu, X. IL-6 translation is a therapeutic target of human cytokine release syndrome. J. Exp. Med., 2023, 220(11), e20230577.
[http://dx.doi.org/10.1084/jem.20230577] [PMID: 37584653]
[55]
Nishi, K.; Yoshimoto, S.; Nishi, S.; Nishi, T.; Nishi, R.; Tanaka, T.; Tsunoda, T.; Imai, K.; Tanaka, H.; Hotta, O.; Tanaka, A.; Hiromatsu, K.; Shirasawa, S.; Nakagawa, T.; Yamano, T. Epipharyngeal abrasive therapy (EAT) reduces the mRNA expression of major proinflammatory cytokine IL-6 in chronic epipharyngitis. Int. J. Mol. Sci., 2022, 23(16), 9205.
[http://dx.doi.org/10.3390/ijms23169205] [PMID: 36012469]
[56]
Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol. (Dordr.), 2020, 43(1), 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[57]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[58]
Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore), 2020, 99(38), e22241.
[http://dx.doi.org/10.1097/MD.0000000000022241] [PMID: 32957369]
[59]
Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; Hirota, J.A.; Wood, L.G.; Simpson, J.L.; Knight, D.A.; Wark, P.A.; Gibson, P.G.; O’Neill, L.A.J.; Cooper, M.A.; Horvat, J.C.; Hansbro, P.M. Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med., 2017, 196(3), 283-297.
[http://dx.doi.org/10.1164/rccm.201609-1830OC] [PMID: 28252317]
[60]
Lopez-Rodriguez, A.B.; Hennessy, E.; Murray, C.L.; Nazmi, A.; Delaney, H.J.; Healy, D.; Fagan, S.G.; Rooney, M.; Stewart, E.; Lewis, A.; de Barra, N.; Scarry, P.; Riggs-Miller, L.; Boche, D.; Cunningham, M.O.; Cunningham, C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement., 2021, 17(10), 1735-1755.
[http://dx.doi.org/10.1002/alz.12341] [PMID: 34080771]
[61]
Malik, A.; Kanneganti, T.D. Function and regulation of IL ‐1α in inflammatory diseases and cancer. Immunol. Rev., 2018, 281(1), 124-137.
[http://dx.doi.org/10.1111/imr.12615] [PMID: 29247991]
[62]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[63]
Taniguchi, K.; Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol., 2014, 26(1), 54-74.
[http://dx.doi.org/10.1016/j.smim.2014.01.001] [PMID: 24552665]
[64]
Unver, N.; McAllister, F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev., 2018, 41, 10-17.
[http://dx.doi.org/10.1016/j.cytogfr.2018.04.004] [PMID: 29699936]
[65]
Sul, O.J.; Ra, S.W. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules, 2021, 26(22), 6949.
[http://dx.doi.org/10.3390/molecules26226949] [PMID: 34834040]
[66]
Zhou, J.; Peng, Z.; Wang, J. Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation, 2021, 44(4), 1507-1517.
[http://dx.doi.org/10.1007/s10753-021-01435-w] [PMID: 33751359]
[67]
Xiong, T.; Zheng, X.; Zhang, K.; Wu, H.; Dong, Y.; Zhou, F.; Cheng, B.; Li, L.; Xu, W.; Su, J.; Huang, J.; Jiang, Z.; Li, B.; Zhang, B.; Lv, G.; Chen, S. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. J. Ethnopharmacol., 2022, 289, 115001.
[http://dx.doi.org/10.1016/j.jep.2022.115001] [PMID: 35085745]
[68]
Jain, S.; Dash, P.; Minz, A.P.; Satpathi, S.; Samal, A.G.; Behera, P.K.; Satpathi, P.S.; Senapati, S. Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF‐κB activation and recurrent dexamethasone administration fails to suppress it in vivo. Prostate, 2019, 79(2), 168-182.
[http://dx.doi.org/10.1002/pros.23722] [PMID: 30264470]
[69]
Muralidharan, S.; Lim, A.; Catalano, D.; Mandrekar, P. Human Binge Alcohol Intake Inhibits TLR4-MyD88 and TLR4-TRIF Responses but Not the TLR3-TRIF Pathway: HspA1A and PP1 Play. Select. Regulat. Roles. J. Immunol., 2018, 200(7), 2291-2303.
[70]
Li, X.; Tupper, J.C.; Bannerman, D.D.; Winn, R.K.; Rhodes, C.J.; Harlan, J.M. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect. Immun., 2003, 71(8), 4414-4420.
[http://dx.doi.org/10.1128/IAI.71.8.4414-4420.2003] [PMID: 12874320]
[71]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[72]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[73]
Jia, S.S.; Peng, Y.; Wang, L.R. C. C; Liu, L. Y; Li, C. Z, Effects of extraction methods on the structure and biological activity of wild rice polysaccharides. Grain Oil, 2023, 36(8), 133-138.
[74]
Feng, S.M.; Liao, W.S.; Pan, J.F.; Yu, J.H.; Chen, B.L.; Li, C.Z. Optimisation of low eutectic solvent extraction process for Dendrobium officinale polysaccharides. Sci. Technol. Food Industry, 2023, 27(8), 1-15.
[75]
Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S.; Manzoor, R.; Deng, Y.; Dai, R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin). Iljinskaja. Int. J. Biol. Macromol., 2020, 156, 420-429.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.022] [PMID: 32289423]