Medicinal Attributes of Pyrazoline in Drug Discovery

Page: [2811 - 2827] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Pyrazoline are structurally versatile nitrogen-containing heterocycle that has gained more attention owing to its diversified pharmacological activities. This special scaffold serves as a fundamental component in a variety of bioactive chemicals, enabling the creation of new molecules with advantageous biological functions. The present review paper provides a summary of diversified pharmacological activities in particular, anticancer, antimalarial, antimicrobial, antifungal, antidepressant, anti-inflammatory, antinociceptive, antitubercular, anticonvulsant, anti-amoebic, antischistosomal, insecticidal, hypotensive, antiviral, antioxidant and anti-trypanosomal activity. This review also presents numerous simple synthetic techniques for the preparation of pyrazolines and also highlights the applicability of pyrazoline in drug discovery.

[1]
Dipankar, B.; Hirakmoy, C.; Asish, B.; Abhijit, C. 2-pyrazoline: A pharmacologically active moiety. Int. Res. J. Pharm. Appl. Sci., 2011, 1, 68-80.
[2]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives--a recent development. Recent pat antiinfect. Drug Discov., 2009, 11, 154-163.
[3]
Shaaban, M.R.; Mayhoub, A.S.; Farag, A.M. Recent advances in the therapeutic applications of pyrazolines. Expert Opin. Ther. Pat., 2012, 22(3), 253-291.
[http://dx.doi.org/10.1517/13543776.2012.667403] [PMID: 22397588]
[4]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S.; Yin-Luo, M.; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[5]
Rathore, P.; Yaseen, S.; Ovais, S.; Bashir, R.; Yaseen, R.; Hameed, A.D.; Samim, M.; Gupta, R.; Hussain, F.; Javed, K. Synthesis and evaluation of some new pyrazoline substituted benzenesulfonylureas as potential antiproliferative agents. Bioorg. Med. Chem. Lett., 2014, 24(7), 1685-1691.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.059] [PMID: 24630557]
[6]
Özdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Çalış, Ü.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[7]
Ozdemir, Z.; Kandilci, H.B.; Gumusel, B.; Calis, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl)pyrazoline derivatives. Arch. Pharm., 2008, 341(11), 701-707.
[http://dx.doi.org/10.1002/ardp.200800068] [PMID: 18816586]
[8]
Aggarwal, R.; Bansal, A.; Rozas, I.; Kelly, B.; Kaushik, P.; Kaushik, D. Synthesis, biological evaluation and molecular modeling study of 5-trifluoromethyl-Δ2-pyrazoline and isomeric 5/3-trifluoromethylpyrazole derivatives as anti-inflammatory agents. Eur. J. Med. Chem., 2013, 70, 350-357.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.052] [PMID: 24177361]
[9]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[10]
Ali, M.A.; Shaharyar, M.; Siddiqui, A.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(2), 268-275.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.004] [PMID: 17007966]
[11]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[12]
Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altıntop, M.D.; Can, Ö.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[13]
Özdemir, A.; Turan-Zitouni, G.; Asım Kaplancıklı, Z.; Revial, G.; Güven, K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 403-409.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.001] [PMID: 17125888]
[14]
Monga, V.; Goyal, K.; Steindel, M.; Malhotra, M.; Rajani, D.P.; Rajani, S.D. Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobial, antitubercular and antileishmanial agents. Med. Chem. Res., 2014, 23(4), 2019-2032.
[http://dx.doi.org/10.1007/s00044-013-0803-1]
[15]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Devrim Can, Ö.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(6), 2606-2610.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.002] [PMID: 18922604]
[16]
Acharya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45(2), 430-438.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[17]
Hassan, S. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[18]
Bhat, A.R.; Athar, F.; Azam, A. New derivatives of 3,5-substituted-1,4,2-dioxazoles: Synthesis and activity against Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(2), 926-936.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.001] [PMID: 18384916]
[19]
Havrylyuk, D.; Zimenkovsky, B.; Karpenko, O.; Grellier, P.; Lesyk, R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur. J. Med. Chem., 2014, 85, 245-254.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.103] [PMID: 25089808]
[20]
Gökhan-Kelekçi, N.; Koyunoğlu, S.; Yabanoğlu, S.; Yelekçi, K.; Özgen, Ö.; Uçar, G.; Erol, K.; Kendi, E.; Yeşilada, A. New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: Synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. Bioorg. Med. Chem., 2009, 17(2), 675-689.
[http://dx.doi.org/10.1016/j.bmc.2008.11.068] [PMID: 19091581]
[21]
Bhutani, R.; Pathak, D.P.; Husain, A.; Kapoor, G.; Kant, R. A review on recent development of pyrazoline as a pharmocologically active molecule. Int. J. Pharm. Sci. Res., 2015, 6, 4113.
[22]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org. Lett., 2008, 10(12), 2377-2379.
[http://dx.doi.org/10.1021/ol800592s] [PMID: 18503279]
[23]
Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V.; Micheli, C.D. A regioselective route to 5-substituted pyrazole and -2-pyrazolines. Tetrahedron, 2007, 63, 5554-5560.
[http://dx.doi.org/10.1016/j.tet.2007.04.027]
[24]
Singh, P.; Negi, J.S.; Pant, G.J.N.; Rawat, M.S.M.; Budakoti, A. 5-(3-Nitrophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carbaldehyde. Tetrahedron, 2009, 614-618.
[25]
Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3, 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[26]
Karuppasamy, M.; Mahapatra, M.; Yabanoglu, S.; Ucar, G.; Sinha, B.N.; Basu, A.; Mishra, N.; Sharon, A.; Kulandaivelu, U.; Jayaprakash, V. Development of selective and reversible pyrazoline based MAO-A inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem., 2010, 18(5), 1875-1881.
[http://dx.doi.org/10.1016/j.bmc.2010.01.043] [PMID: 20149663]
[27]
Levai, L.; Jeko, J. A simple efficient procedure for the stereoselective synthesis of trans-2,3,3a,4-[1]benzothiopyrano analogues. Acta Chim. Slov., 2009, 56, 566-570.
[28]
Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[29]
Chen, Y.; Tortorici, M.A.; Garrett, M.; Hee, B.; Klamerus, K.J.; Pithavala, Y.K. Clinical pharmacology of axitinib. Clin. Pharmacokinet., 2013, 52(9), 713-725.
[http://dx.doi.org/10.1007/s40262-013-0068-3] [PMID: 23677771]
[30]
Parmar, S.; Patel, K.; Pinilla-Ibarz, J. Ibrutinib (imbruvica): A novel targeted therapy for chronic lymphocytic leukemia. P t, 2014, 39(7), 483-519.
[PMID: 25083126]
[31]
Chorvat, R.J.; Berbaum, J.; Seriacki, K.; McElroy, J.F. Peripherally restricted CB1 receptor blockers. Bioorg. Med. Chem. Lett., 2013, 23(17), 4751-4760.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.066] [PMID: 23902803]
[32]
Santosa, A.; Rumbiana, A.; Wahab, Z.; Kurniawan, S.P.; Naibaho, R.M.; Yogyartono, P. Successful treatment of methampyrone-induced toxic epidermal necrolysis with therapeutic plasma exchange. Case Rep. Med., 2018, 2018, 1-4.
[http://dx.doi.org/10.1155/2018/2182604]
[33]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047-1058.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[34]
Lho, D.; Shin, H.; Park, J. Simultaneous determination of morazone and phenmetrazine in rat plasma and urine using an on-column injection technique with fused-silica capillary column gas chromatography. J. Anal. Toxicol., 1990, 14(2), 113-115.
[http://dx.doi.org/10.1093/jat/14.2.113] [PMID: 1969972]
[35]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5), 172435-172451.
[http://dx.doi.org/10.1098/rsos.172435] [PMID: 29892430]
[36]
Zeng, Y.; Zhu, G.; Zhu, M.; Song, J.; Cai, H. Edaravone attenuated particulate matter-induced lung inflammation by inhibiting ROS-NF-κB signaling pathway. Oxid. Med. Cell. Longev., 2022, 1-11.
[http://dx.doi.org/10.1155/2022/2242833]
[37]
Lupu, G.; Bel, L.; Andrei, S. Pain management and analgesics used in small mammals during post-operative period with an emphasis on metamizole (dipyrone) as an alternative medication. Molecules, 2022, 27(21), 7434-7444.
[http://dx.doi.org/10.3390/molecules27217434] [PMID: 36364259]
[38]
Reinoso, R.F.; Farrán, R.; Moragón, T.; García-Soret, A.; Martínez, L. Pharmacokinetics of E-6087, a new anti-inflammatory agent, in rats and dogs. Biopharm. Drug Dispos., 2001, 22(6), 231-242.
[http://dx.doi.org/10.1002/bdd.258] [PMID: 11754039]
[39]
Prickaerts, J. SLV330, a cannabinoid CB1 receptor antagonist, ameliorates deficits in the T-maze, object recognition and Social Recognition Tasks in rodents. Neurobiol. Learn. Mem., 2010, 93, 522-531.
[40]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[41]
Chang, L.C.; Lin, H.Y.; Tsai, M.T.; Chou, R.H.; Lee, F.Y.; Teng, C.M.; Hsieh, M.T.; Hung, H.Y.; Huang, L.J.; Yu, Y.L.; Kuo, S.C.Y.C. ‐1 inhibits proliferation of breast cancer cells by down‐regulating EZH 2 expression via activation of c‐ C bl and ERK. Br. J. Pharmacol., 2014, 171(17), 4010-4025.
[http://dx.doi.org/10.1111/bph.12708] [PMID: 24697523]
[42]
Schöffski, P.; Cresta, S.; Mayer, I.A.; Wildiers, H.; Damian, S.; Gendreau, S.; Rooney, I.; Morrissey, K.M.; Spoerke, J.M.; Ng, V.W.; Singel, S.M.; Winer, E. A phase Ib study of pictilisib (GDC-0941) in combination with paclitaxel, with and without bevacizumab or trastuzumab, and with letrozole in advanced breast cancer. Breast Cancer Res., 2018, 20(1), 109-121.
[http://dx.doi.org/10.1186/s13058-018-1015-x] [PMID: 30185228]
[43]
Acker, T.M.; Liotta, D.C.; Stephen, F.; Jing, T.Y. Pyrazoline dihydroquinolones, pharmaceutical compositions, and uses. U.S. Patent 11117882B2, 2021.
[44]
Long, Lu.; Cassayre, J. Y.; Berthon, G.; El Qacemi, M.; Yaming, Wu. Pyrazoline derivatives as insecticidal compounds. E.P. Patent 2948439b1, 2020.
[45]
Buschmann, H.H.; Torrens-Jover, A.; Mas-Prio, J.; Yenes-Minguez, S. Sulfonamide substituted pyrazoline compounds, their preparation and use as cb1 modulators. W.O. Patent 2008043544, 2008.
[46]
Zilaout, B. 5-aryl-4,5-dihydro-(1h)-pyrazoles as cannabinoid cb1 receptor agonists. W.O. Patent 2009037244, 2009.
[47]
Adams, R.S.; Duffey, M.; Gould, A.E.; Greenspan, P.D.; Kulkarni, B.A.; Vos, T.J. Certain pyrazoline derivatives with kinase inhibitory activity. W.O. Patent 2008079277, 2008.
[48]
Buschmann, H. H.; Torrens-Jover, A.; Yenes Minguez, S.; Benet-Buchholz, J.; Sola-Carandell, L. Gamma-polymorph of a substituted pyrazoline, its preparation and use as medicaments. E.P. Patent 1944294A1, 2008.
[49]
Buschmann, H.H. Cb1 antagonists or inverse antagonists as therapeutical agents for the treatment of inflammation involving gene expression. W.O. Patent 2007017125, 2007.
[50]
Pinto, D.J.P. Disubstituted pyrazolines and triazolines as factor Xa inhibitors. U.S. Patent 20010000179, 2001.
[51]
Passedouet, A.H.; Roussos, M.G.; Pigeot, J.; Paillole, N. 1 3-diaryl- 1 2-pyrazolines and their preparation. U.S. Patent 3652584, 1972.
[52]
Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem., 2022, 5, 100042-100069.
[53]
Marivel, S.; Braga, D.; Grepioni, F.; Lampronti, G.I. Mechanochemical preparation of adducts (co-crystals and molecular salts) of 1,4-diazabicyclo-[2.2.2]-octane with aromatic polycarboxylic acids. CrystEngComm, 2010, 12(7), 2107-2112.
[http://dx.doi.org/10.1039/b922915a]
[54]
Edrees, M.; Melha, S.; Saad, A.; Kheder, N.; Gomha, S.; Muhammad, Z. Eco-friendly synthesis, characterization and biological evaluation of some novel pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents. Molecules, 2018, 23(11), 2970-2974.
[http://dx.doi.org/10.3390/molecules23112970] [PMID: 30441815]
[55]
Ravula, P.; Vamaraju, H.B.; Paturi, M.; Bodige, S.; Gulipalli, K.C.; Narendra Sharath Chandra, J.N. Design, synthesis, and docking studies of novel dimethyl triazene incorporated thiazolyl pyrazolines for anticancer activity. J. Heterocycl. Chem., 2018, 55(6), 1313-1323.
[http://dx.doi.org/10.1002/jhet.3163]
[56]
Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.044] [PMID: 30041136]
[57]
Moreno, L.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956-1976.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[58]
Abonia, R.; Cortés, E.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel 1,2,5-trisubstituted benzimidazoles as potential antitumor agents. Eur. J. Med. Chem., 2011, 46(9), 4062-4070.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.006] [PMID: 21719162]
[59]
Matiadis, D.; Mavroidi, B.; Panagiotopoulou, A.; Methenitis, C.; Pelecanou, M.; Sagnou, M. (E)-(1-(4-ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline: synthesis, characterization, dna-interaction, and evaluation of activity against drug-resistant cell lines. Molbank, 2020, 2020(1), M1114-M1119.
[http://dx.doi.org/10.3390/M1114]
[60]
Kuthyala, S.; Nagaraja, G.K.; Sheik, S.; Hanumanthappa, M.; Kumar, S. M.; Prabhu, A. Synthesis of imidazo [1, 2-a]pyridine-chalcones as potent inhibitors against A549 cell line and their crystal studies. J. Mol. Struct., 2019, 1177, 381-390.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.087]
[61]
Gangarapu, K.; Thumma, G.; Manda, S.; Jallapally, A.; Jarapula, R.; Rekulapally, S. Design, synthesis and molecular docking of novel structural hybrids of substituted isatin based pyrazoline and thiadiazoline as antitumor agents. Med. Chem. Res., 2017, 26(4), 819-829.
[http://dx.doi.org/10.1007/s00044-017-1781-5]
[62]
Kumar, R.; Singh, H.; Mazumder, A. Salahuddin; Yadav, R.K. Synthetic approaches, biological activities, and structure-activity relationship of pyrazolines and related derivatives. Top. Curr. Chem., 2023, 381(3), 12-18.
[http://dx.doi.org/10.1007/s41061-023-00422-z] [PMID: 37029841]
[63]
Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[64]
Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S.M.; Vélez, I.D.; Upegui, Y.; Muñoz, J.A.; Ospina, V.; Nogueras, M.; Cobo, J. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur. J. Med. Chem., 2015, 93, 401-413.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.040] [PMID: 25725376]
[65]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[66]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25(6), 1949-1962.
[http://dx.doi.org/10.1016/j.bmc.2017.02.025] [PMID: 28237557]
[67]
Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem., 2016, 123, 476-486.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.055] [PMID: 27494165]
[68]
Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Akhter, M.; Marella, A.; Parmar, S.; Khatoon, R.; Alam, M.M. Coumarin-pyrazoline derivatives: Their one-pot microwave assisted synthesis and antimalarial activity. J. Pharmaceut. Med. Chem., 2017, 3, 6-9.
[69]
Akhter, W.; Marella, A.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Microwave assissted synthesis of pyrazoline-coumarin hybrids and their in-vitro antimalarial evaluation. J. Pharm. Res., 2015, 9, 318-322.
[70]
Thach, T.D.; Le, T.; Nguyen, T.A.; Dang, C.H.; Dang, V.S.; Nguyen, T.D. Synthesis of sulfonamides bearing 1,3,5-triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents. J. Serb. Chem. Soc., 2020, 85(2), 155-162.
[http://dx.doi.org/10.2298/JSC180621057T]
[71]
Almahdi, M.M.; Saeed, A.E.M.; Metwally, N.H. Synthesis and antimicrobial activity of some new pyrazoline derivatives bearing sulfanilamido moiety. Eur. J. Chem., 2019, 10(1), 30-36.
[http://dx.doi.org/10.5155/eurjchem.10.1.30-36.1791]
[72]
Shamsuzzaman, H.; Khanam, H.; Dar, A.M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20(1), 7-12.
[http://dx.doi.org/10.1016/j.jscs.2012.05.004]
[73]
Montoya, A.; Quiroga, J.; Abonia, R.; Derita, M.; Sortino, M.; Ornelas, A.; Zacchino, S.; Insuasty, B. Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules, 2016, 21(8), 969-978.
[http://dx.doi.org/10.3390/molecules21080969] [PMID: 27472314]
[74]
Delogu, G.L.; Pintus, F.; Mayán, L.; Matos, M.J.; Vilar, S.; Munín, J.; Fontenla, J.A.; Hripcsak, G.; Borges, F.; Viña, D. MAO inhibitory activity of bromo-2-phenylbenzofurans: Synthesis, in vitro study, and docking calculations. MedChemComm, 2017, 8(9), 1788-1796.
[http://dx.doi.org/10.1039/C7MD00311K] [PMID: 30108888]
[75]
Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36(6), 539-543.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[76]
Gökhan-Kelekçi, N.; Yabanoğlu, S.; Küpeli, E.; Salgın, U.; Özgen, Ö.; Uçar, G.; Yeşilada, E.; Kendi, E.; Yeşilada, A.; Bilgin, A.A. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem., 2007, 15(17), 5775-5786.
[http://dx.doi.org/10.1016/j.bmc.2007.06.004] [PMID: 17611112]
[77]
Jayaprakash, V.; Sinha, B.N.; Ucar, G.; Ercan, A. Pyrazoline-based mycobactin analogues as MAO-inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(24), 6362-6368.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.084] [PMID: 18980841]
[78]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Rossi, F.; Turini, P.; Ortuso, F.; Alcaro, S.; Cardia, M.C. Synthesis, molecular modeling studies and selective inhibitory activity against MAO of N1-propanoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem., 2008, 43(10), 2262-2267.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.026] [PMID: 18281126]
[79]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. An expeditious one-pot microwave facilitated versus conventional syntheses: In vivo biological screening and molecular docking studies of some 3,5-disubstituted-4,5-dihydro-(1H)-pyrazole derivatives. Med. Chem. Res., 2016, 25(3), 390-406.
[http://dx.doi.org/10.1007/s00044-015-1489-3]
[80]
Eid, N.M.; George, R.F. Facile synthesis of some pyrazoline-based compounds with promising anti-inflammatory activity. Future Med. Chem., 2018, 10(2), 183-199.
[http://dx.doi.org/10.4155/fmc-2017-0144] [PMID: 29185353]
[81]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[82]
Cai, X.; Zhao, S.; Cai, D.; Zheng, J.; Zhu, Z.; Wei, D.; Zheng, Z.; Zhu, H.; Chen, Y. Synthesis and evaluation of novel D-ring substituted steroidal pyrazolines as potential anti-inflammatory agents. Steroids, 2019, 146, 70-78.
[http://dx.doi.org/10.1016/j.steroids.2019.03.012] [PMID: 30951758]
[83]
Viveka, S.; Dinesha, P.; Shama, P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem., 2015, 101, 442-451.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.002] [PMID: 26186150]
[84]
Rani, P.; Srivastava, V.K.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem., 2004, 39(5), 449-452.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.002] [PMID: 15110970]
[85]
Barsoum, F.F.; Girgis, A.S. Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1-carboxamides) and their thio-analogues of potential PGE2 inhibitory properties. Eur. J. Med. Chem., 2009, 44(5), 2172-2177.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.020] [PMID: 19056146]
[86]
Girisha, K.S.; Kalluraya, B.; Narayana, V.; Padmashree, P. Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline. Eur. J. Med. Chem., 2010, 45(10), 4640-4644.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.032] [PMID: 20702008]
[87]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[88]
Godoy, M.C.M.; Fighera, M.R.; Souza, F.R.; Flores, A.E.; Rubin, M.A.; Oliveira, M.R.; Zanatta, N.; Martins, M.A.P.; Bonacorso, H.G.; Mello, C.F. α2-Adrenoceptors and 5-HT receptors mediate the antinociceptive effect of new pyrazolines, but not of dipyrone. Eur. J. Pharmacol., 2004, 496(1-3), 93-97.
[http://dx.doi.org/10.1016/j.ejphar.2004.05.045] [PMID: 15288580]
[89]
Shenoy, G.G.; Bhat, A.R.; Bhat, G.V.; Kotian, M. Synthesis and antimicrobial activities of 1,3,5 trisubstituted 2-pyrazolines. Indian J. Heterocycl. Chem., 2001, 10, 197-200.
[90]
Shaharyar, M.; Siddiqui, A.A.; Ali, M.A.; Sriram, D.; Yogeeswari, P. Synthesis and in vitro antimycobacterial activity of] N1-nicotinoyl-3-(4′-hydroxy-3′-methylphenyl)-5-[(sub)phenyl]-2-pyrazolines. Bioorg. Med. Chem. Lett., 2006, 16(15), 3947-3949.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.024] [PMID: 16725324]
[91]
Hayat, F.; Salahuddin, A.; Umar, S.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail. Eur. J. Med. Chem., 2010, 45(10), 4669-4675.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.028] [PMID: 20696501]
[92]
Budakoti, A.; Abid, M.; Azam, A. Syntheses, characterization and in vitro antiamoebic activity of new Pd(II) complexes with 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(4), 544-551.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.011] [PMID: 17156895]
[93]
Abid, M.; Azam, A. Synthesis and antiamoebic activities of 1-N-substituted cyclised pyrazoline analogues of thiosemicarbazones. Bioorg. Med. Chem., 2005, 13(6), 2213-2220.
[http://dx.doi.org/10.1016/j.bmc.2004.12.050] [PMID: 15727873]
[94]
Abid, M.; Bhat, A.R.; Athar, F.; Azam, A. Synthesis, spectral studies and antiamoebic activity of new 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines. Eur. J. Med. Chem., 2009, 44(1), 417-425.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.032] [PMID: 18068873]
[95]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[96]
Matiadis, D.; Saporiti, T.; Aguilera, E.; Robert, X.; Guillon, C.; Cabrera, N.; Pérez-Montfort, R.; Sagnou, M.; Alvarez, G. Pyrazol(in)e derivatives of curcumin analogs as a new class of anti- Trypanosoma cruzi agents. Future Med. Chem., 2021, 13(8), 701-714.
[http://dx.doi.org/10.4155/fmc-2020-0349] [PMID: 33648346]
[97]
Saeed, M.E.M.; Krishna, S.; Greten, H.J.; Kremsner, P.G.; Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res., 2016, 110, 216-226.
[http://dx.doi.org/10.1016/j.phrs.2016.02.017] [PMID: 26902577]
[98]
Morais, C.S.; Mengarda, A.C.; Miguel, F.B.; Enes, K.B.; Rodrigues, V.C.; Espírito-Santo, M.C.C.; Siyadatpanah, A.; Wilairatana, P.; Couri, M.R.C.; de Moraes, J.; de Moraes, J. Pyrazoline derivatives as promising novel antischistosomal agents. Sci. Rep., 2021, 11(1), 23437.
[http://dx.doi.org/10.1038/s41598-021-02792-0] [PMID: 34873205]
[99]
Silver, K.S.; Soderlund, D.M. Action of pyrazoline-type insecticides at neuronal target sites. Pestic. Biochem. Physiol., 2005, 81(2), 136-143.
[http://dx.doi.org/10.1016/j.pestbp.2004.09.003]
[100]
Péterfi, O.; Boda, F.; Szabó, Z.; Ferencz, E.; Bába, L. Hypotensive snake venom components-A mini-review. Molecules, 2019, 24(15), 2778.
[http://dx.doi.org/10.3390/molecules24152778] [PMID: 31370142]
[101]
Turan-Zitouni, G.; Chevallet, P.; Kiliç, F.S.; Erol, K. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur. J. Med. Chem., 2000, 35(6), 635-641.
[http://dx.doi.org/10.1016/S0223-5234(00)00152-5] [PMID: 10906414]
[102]
Puig-Basagoiti, F.; Tilgner, M.; Forshey, B.M.; Philpott, S.M.; Espina, N.G.; Wentworth, D.E.; Goebel, S.J.; Masters, P.S.; Falgout, B.; Ren, P.; Ferguson, D.M.; Shi, P.Y. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob. Agents Chemother., 2006, 50(4), 1320-1329.
[http://dx.doi.org/10.1128/AAC.50.4.1320-1329.2006] [PMID: 16569847]
[103]
Pachuta-Stec, A. Antioxidant activity of 1,2,4-triazole and its derivatives: A mini-review. Mini Rev. Med. Chem., 2022, 22(7), 1081-1094.
[http://dx.doi.org/10.2174/1389557521666210401091802] [PMID: 33797373]
[104]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[105]
Srinivasan, K.K.; Babu, V.H.; Sridevi, C.H.; Joseph, A. Synthesis and biological evaluation of some novel pyrazolines. Indian J. Pharm. Sci., 2007, 69(3), 470-473.
[http://dx.doi.org/10.4103/0250-474X.34569]