In-silico Investigations for the Identification of Novel Inhibitors Targeting Hepatitis C Virus RNA-dependent RNA Polymerase

Page: [52 - 62] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus, exhibiting acute and chronic manifestations with severity ranging from mild to severe and lifelong illnesses leading to liver cirrhosis and cancer. According to the World Health Organization’s global estimates, a population of about 58 million have chronic hepatitis C virus infection, with around 1.5 million new infections occurring every year.

Objective: The present study aimed to identify novel molecules targeting the Hepatitis C viral RNA Dependent RNA polymerases, which play a crucial role in genome replication, mRNA synthesis, etc.

Methods: Structure-based virtual screening of chemical libraries of small molecules was done using AutoDock/Vina. The top-ranking pose for every ligand was complexed with the protein and used for further protein-ligand interaction analysis using the Protein-ligand interaction Profiler. Molecules from virtual screening were further assessed using the pkCSM web server. The proteinligand interactions were further subjected to molecular dynamics simulation studies to establish dynamic stability.

Results: Molecular docking-based virtual screening of the database of small molecules, followed by screening based on pharmacokinetic and toxicity parameters, yielded eight probable RNA Dependent RNA polymerase inhibitors. The docking scores for the proposed candidates ranged from - 8.04 to -9.10 kcal/mol. The potential stability of the ligands bound to the target protein was demonstrated by molecular dynamics simulation studies.

Conclusion: Data from exhaustive computational studies proposed eight molecules as potential anti-viral candidates, targeting Hepatitis C viral RNA Dependent RNA polymerases, which can be further evaluated for their biological potential.

Graphical Abstract

[1]
Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.; Assadi, R.; Bhala, N.; Cowie, B.; Forouzanfour, M.H.; Groeger, J.; Hanafiah, K.M.; Jacobsen, K.H.; James, S.L.; MacLachlan, J.; Malekzadeh, R.; Martin, N.K.; Mokdad, A.A.; Mokdad, A.H.; Murray, C.J.L.; Plass, D.; Rana, S.; Rein, D.B.; Richardus, J.H.; Sanabria, J.; Saylan, M.; Shahraz, S.; So, S.; Vlassov, V.V.; Weiderpass, E.; Wiersma, S.T.; Younis, M.; Yu, C.; El Sayed, Z.M.; Cooke, G.S. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet, 2016, 388(10049), 1081-1088.
[http://dx.doi.org/10.1016/S0140-6736(16)30579-7] [PMID: 27394647]
[2]
Shepard, C.W.; Finelli, L.; Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis., 2005, 5(9), 558-567.
[http://dx.doi.org/10.1016/S1473-3099(05)70216-4] [PMID: 16122679]
[3]
Mohd Hanafiah, K.; Groeger, J.; Flaxman, A.D.; Wiersma, S.T. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology, 2013, 57(4), 1333-1342.
[http://dx.doi.org/10.1002/hep.26141] [PMID: 23172780]
[4]
Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections; World Health Organization, 2021.
[5]
Lindenbach, B.D.; Rice, C.M. The ins and outs of hepatitis C virus entry and assembly. Nat. Rev. Microbiol., 2013, 11(10), 688-700.
[http://dx.doi.org/10.1038/nrmicro3098] [PMID: 24018384]
[6]
Aizawa, Y.; Seki, N.; Nagano, T.; Abe, H. Chronic hepatitis C virus infection and lipoprotein metabolism. World J. Gastroenterol., 2015, 21(36), 10299-10313.
[http://dx.doi.org/10.3748/wjg.v21.i36.10299] [PMID: 26420957]
[7]
Niepmann, M. Hepatitis C virus RNA translation. Curr Top Microbiol Immunol., 2013, 369, 143-166.
[8]
Moradpour, D.; Penin, F. Hepatitis C virus proteins: From structure to function. Curr. Top. Microbiol. Immunol., 2013, 369, 113-142.
[9]
Paul, D.; Madan, V.; Bartenschlager, R. Hepatitis C virus RNA replication and assembly: Living on the fat of the land. Cell Host Microbe., 2014, 16(5), 569-579.
[http://dx.doi.org/10.1016/j.chom.2014.10.008] [PMID: 25525790]
[10]
Suzuki, R.; Matsuda, M.; Watashi, K.; Aizaki, H.; Matsuura, Y.; Wakita, T.; Suzuki, T. Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2. PLoS Pathog., 2013, 9(8), e1003589.
[http://dx.doi.org/10.1371/journal.ppat.1003589] [PMID: 24009510]
[11]
Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka, N.; Yatsunami, K.; Miyano, M. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure, 1999, 7(11), 1417-1426.
[http://dx.doi.org/10.1016/S0969-2126(00)80031-3] [PMID: 10574802]
[12]
Penin, F.; Dubuisson, J.; Rey, F.A.; Moradpour, D.; Pawlotsky, J.M. Structural biology of hepatitis C virus. Hepatology, 2004, 39(1), 5-19.
[http://dx.doi.org/10.1002/hep.20032] [PMID: 14752815]
[13]
Mittal, L.; Kumari, A.; Suri, C.; Bhattacharya, S.; Asthana, S. Insights into structural dynamics of allosteric binding sites in HCV RNA-dependent RNA polymerase. J. Biomol. Struct. Dyn., 2020, 38(6), 1612-1625.
[PMID: 31057089]
[14]
Sofia, M.J. Nucleotide prodrugs for the treatment of HCV infection. Adv. Pharmacol., 2013, 67, 39-73.
[http://dx.doi.org/10.1016/B978-0-12-405880-4.00002-0] [PMID: 23885998]
[15]
Caillet-Saguy, C.; Simister, P.C.; Bressanelli, S. An objective assessment of conformational variability in complexes of hepatitis C virus polymerase with non-nucleoside inhibitors. J. Mol. Biol., 2011, 414(3), 370-384.
[http://dx.doi.org/10.1016/j.jmb.2011.10.001] [PMID: 22008450]
[16]
Eltahla, A.; Luciani, F.; White, P.; Lloyd, A.; Bull, R. Inhibitors of the hepatitis C virus polymerase; mode of action and resistance. Viruses, 2015, 7(10), 5206-5224.
[http://dx.doi.org/10.3390/v7102868] [PMID: 26426038]
[17]
Eltahla, A.A.; Lim, K.L.; Eden, J.S.; Kelly, A.G.; Mackenzie, J.M.; White, P.A. Nonnucleoside inhibitors of norovirus RNA polymerase: Scaffolds for rational drug design. Antimicrob. Agents Chemother., 2014, 58(6), 3115-3123.
[http://dx.doi.org/10.1128/AAC.02799-13] [PMID: 24637690]
[18]
Manjula, S.; Sivanandam, M.; Kumaradhas, P. Probing the “fingers” domain binding pocket of Hepatitis C virus NS5B RdRp and D559G resistance mutation via molecular docking, molecular dynamics simulation and binding free energy calculations. J. Biomol. Struct. Dyn., 2019, 37(9), 2440-2456.
[http://dx.doi.org/10.1080/07391102.2018.1491419] [PMID: 30047829]
[19]
Wang, Z.; Chen, Z.; Li, J.; Huang, J.; Zheng, C.; Liu, J.P. Combined 3D-QSAR, molecular docking and molecular dynamics study on the benzimidazole inhibitors targeting HCV NS5B polymerase. J. Biomol. Struct. Dyn., 2019, 38(4), 1071-1082.
[PMID: 30915896]
[20]
Polamreddy, P.; Vishwakarma, V.; Arumugam, P.; Bheemanati, R.; Esram, P.; Mahto, M.K.; Kacker, P. Discovery of hit molecules targeting allosteric site of hepatitis C virus NS5B polymerase. J. Biomol. Struct. Dyn., 2019, 38(5), 1448-1466.
[PMID: 31007134]
[21]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33]
[22]
Maliwal, D.; Pissurlenkar, R.R.S.; Telvekar, V. Identification of novel potential anti-diabetic candidates targeting human pancreatic α-amylase and human α-glycosidase: An exhaustive structure-based screening. Can. J. Chem., 2022, 100(5), 338-352.
[http://dx.doi.org/10.1139/cjc-2021-0238]
[23]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[24]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N. Weissing & Shindyalov Bourne PE Protein Data Bank, 2000, 235-242.
[25]
Stephen, K. B.; Helen, M.B.; Gerard, J.K. Protein Data Bank (PDB): The single global macromolecular structure archive. In: Protein Crystallography; , 1607; pp. 627-641.
[26]
Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Burley, S.K. RCSB protein data bank: Enabling biomedical research and drug discovery. Protein Sci., 2020, 29(1), 52-65.
[http://dx.doi.org/10.1002/pro.3730] [PMID: 31531901]
[27]
Li, L.S.; Zhou, Y.; Murphy, D.E.; Stankovic, N.; Zhao, J.; Dragovich, P.S.; Bertolini, T.; Sun, Z.; Ayida, B.; Tran, C.V.; Ruebsam, F.; Webber, S.E.; Shah, A.M.; Tsan, M.; Showalter, R.E.; Patel, R.; LeBrun, L.A.; Bartkowski, D.M.; Nolan, T.G.; Norris, D.A.; Kamran, R.; Brooks, J.; Sergeeva, M.V.; Kirkovsky, L.; Zhao, Q.; Kissinger, C.R. Novel HCV NS5B polymerase inhibitors derived from 4-(1′,1′-dioxo-1′,4′-dihydro-1′λ6-benzo[1′,2′,4′]thiadiazin-3′-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 3: Further optimization of the 2-, 6-, and 7′-substituents and initial pharmacokinetic assessments. Bioorg. Med. Chem. Lett., 2008, 18(11), 3446-3455.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.072] [PMID: 18457949]
[28]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[29]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[30]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[31]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[32]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[33]
Release, S. 2021-1: Desmond Molecular Dynamics System; D.E. Shaw Research: New York, NY, 2021.
[34]
Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K. November. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, p. 84.
[http://dx.doi.org/10.1145/1188455.1188544]
[35]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]