Construction of Prognostic ceRNA Network Landscape in Breast Cancer to Explore Impacting Genes on Drug Response by Integrative Bioinformatics Analysis

Page: [2467 - 2481] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Breast cancer accounts for 30% of all new female cancers yearly. Bioinformatics serves us to find new biomarkers and facilitate future experimental research. Exploring a distinct network of competing endogenous RNA (ceRNA) that includes potential prognostic, diagnostic, and therapeutic biomarkers is captivating.

Methods: Differentially expressed lncRNAs, mRNAs, and miRNAs were collected using Gene Expression Omnibus datasets. DEGs were validated based on TCGA. Functional analysis and pathway activity were also done. Drug sensitivity analyses were done, and IC50 vs. gene expression plots were depicted.

Results: A total of 696 mRNAs, 48 lncRNAs, and, 43 miRNAs were identified to have significant differential expression in cancerous breast tissue than normal breast tissue samples. Functional analysis showed significant pathway enrichments in cancer. We found that 13 individual genes, lncRNAs, and miRNAs, CDC6, ERBB2, EZR, HELLS, MAPK13, MCM2, MMP1, SLC7A5, TINCR, TRIP13, hsa-miR-376a, hsa-miR-21, hsa-miR-454 were significantly predictive of poor overall survival and AKAP12, CXCL12, FGF2, IRS2, LINC00342, LINC01140, MEG3, MIR250HG, NAV3, NDRG2, NEAT1, TGFBR3 and, hsa-miR-29c were associated with favorable overall survival. We reached a set of five genes (EGR1, NFIB, TGFBR3, SMARCA4, and MCM2) that exhibit altered expression patterns in breast cancer, resulting in increased susceptibility of cancer cells to certain drug treatments.

Conclusion: We successfully made a unique ce-network, providing new clues to understand the regulatory functions of non-coding RNAs (miRNAs and lncRNAs) in the pathogenesis and prognosis of breast cancer and will facilitate further experimental studies to develop new biomarkers in the diagnosis, prognosis and, therapy of breast cancer.

[1]
Friedenreich, C.M. Physical activity and breast cancer: Review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res., 2010, 188, 125-139.
[http://dx.doi.org/10.1007/978-3-642-10858-7_11] [PMID: 21253795]
[2]
Cancer statistics center. Available from: http://cancerstatisticscenter.cancer.org
[3]
Polyak, K.; Vogt, P.K. Progress in breast cancer research. Proc. Natl. Acad. Sci., 2012, 109(8), 2715-2717.
[http://dx.doi.org/10.1073/pnas.1201091109] [PMID: 22331869]
[4]
Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest., 2011, 121(10), 3786-3788.
[http://dx.doi.org/10.1172/JCI60534] [PMID: 21965334]
[5]
Lüönd, F.; Tiede, S.; Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer, 2021, 125(2), 164-175.
[http://dx.doi.org/10.1038/s41416-021-01328-7] [PMID: 33824479]
[6]
Martelotto, L.G.; Ng, C.K.Y.; Piscuoglio, S.; Weigelt, B.; Reis-Filho, J.S. Breast cancer intra-tumor heterogeneity. Breast Cancer Res., 2014, 16(3), 210.
[http://dx.doi.org/10.1186/bcr3658] [PMID: 25928070]
[7]
Liu, W.; Han, Y. Clinical outcomes and a nomogram for de novo metastatic breast cancer with lung metastasis: A population-based study. Sci. Rep., 2022, 12(1), 3597.
[http://dx.doi.org/10.1038/s41598-022-07565-x] [PMID: 35246585]
[8]
Lang, J.E.; Wecsler, J.S.; Press, M.F.; Tripathy, D. Molecular markers for breast cancer diagnosis, prognosis and targeted therapy. J. Surg. Oncol., 2015, 111(1), 81-90.
[http://dx.doi.org/10.1002/jso.23732] [PMID: 25091830]
[9]
Li, J.; Guan, X.; Fan, Z.; Ching, L.M.; Li, Y.; Wang, X.; Cao, W.M.; Liu, D.X. Non-invasive biomarkers for early detection of breast cancer. Cancers, 2020, 12(10), 2767.
[http://dx.doi.org/10.3390/cancers12102767] [PMID: 32992445]
[10]
Beenken, S.W.; Grizzle, W.E.; Crowe, D.R.; Conner, M.G.; Weiss, H.L.; Sellers, M.T.; Krontiras, H.; Urist, M.M.; Bland, K.I. Molecular biomarkers for breast cancer prognosis: coexpression of c-erbB-2 and p53. Ann. Surg., 2001, 233(5), 630-638.
[http://dx.doi.org/10.1097/00000658-200105000-00006] [PMID: 11323501]
[11]
Freelander, A.; Brown, L.J.; Parker, A.; Segara, D.; Portman, N.; Lau, B.; Lim, E. Molecular biomarkers for contemporary therapies in hormone receptor-positive breast cancer. Genes, 2021, 12(2), 285.
[http://dx.doi.org/10.3390/genes12020285] [PMID: 33671468]
[12]
Afzal, S.; Hassan, M.; Ullah, S.; Abbas, H.; Tawakkal, F.; Khan, M.A. Breast cancer; Discovery of novel diagnostic biomarkers, drug resistance, and therapeutic implications. Front. Mol. Biosci., 2022, 9, 783450.
[http://dx.doi.org/10.3389/fmolb.2022.783450] [PMID: 35265667]
[13]
Kutomi, G.; Mizuguchi, T.; Satomi, F.; Maeda, H.; Shima, H.; Kimura, Y.; Hirata, K. Current status of the prognostic molecular biomarkers in breast cancer: A systematic review. Oncol. Lett., 2017, 13(3), 1491-1498.
[http://dx.doi.org/10.3892/ol.2017.5609] [PMID: 28454281]
[14]
Najjar, S.; Allison, K.H. Updates on breast biomarkers. Virchows Arch., 2022, 480(1), 163-176.
[http://dx.doi.org/10.1007/s00428-022-03267-x] [PMID: 35029776]
[15]
Jones, S.E. Metastatic breast cancer: The treatment challenge. Clin. Breast Cancer, 2008, 8(3), 224-233.
[http://dx.doi.org/10.3816/CBC.2008.n.025] [PMID: 18650152]
[16]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[17]
Duffy, M.J.; Walsh, S.; McDermott, E.W.; Crown, J. Biomarkers in breast cancer: Where are we and where are we going? Adv. Clin. Chem., 2015, 71, 1-23.
[http://dx.doi.org/10.1016/bs.acc.2015.05.001] [PMID: 26411409]
[18]
Nicolini, A.; Ferrari, P.; Duffy, M.J. Prognostic and predictive biomarkers in breast cancer: Past, present and future.Seminars in cancer biology; Elsevier, 2018.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.010]
[19]
Karimi, M.R.; Karimi, A.H.; Abolmaali, S.; Sadeghi, M.; Schmitz, U. Prospects and challenges of cancer systems medicine: from genes to disease networks. Brief. Bioinform., 2022, 23(1), bbab343.
[http://dx.doi.org/10.1093/bib/bbab343] [PMID: 34471925]
[20]
Zeng, X.; Shi, G.; He, Q.; Zhu, P. Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis. Sci. Rep., 2021, 11(1), 20799.
[http://dx.doi.org/10.1038/s41598-021-00268-9] [PMID: 34675265]
[21]
Wang, N.; Zhang, H.; Li, D.; Jiang, C.; Zhao, H.; Teng, Y. Identification of novel biomarkers in breast cancer via integrated bioinformatics analysis and experimental validation. Bioengineered, 2021, 12(2), 12431-12446.
[http://dx.doi.org/10.1080/21655979.2021.2005747] [PMID: 34895070]
[22]
Deng, J.L.; Xu, Y.; Wang, G. Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front. Genet., 2019, 10, 695.
[http://dx.doi.org/10.3389/fgene.2019.00695] [PMID: 31428132]
[23]
Sabetian, S.; Zarei, M.; Jahromi, B.N.; Morowvat, M.H.; Tabei, S.M.B.; Cava, C. Exploring the dysregulated mRNAs–miRNAs–lncRNAs interactions associated to idiopathic non-obstructive azoospermia. J. Biomol. Struct. Dyn., 2022, 40(13), 5956-5964.
[http://dx.doi.org/10.1080/07391102.2021.1875879] [PMID: 33499760]
[24]
Qian, D.; Zheng, Q.; Wu, D.; Ye, B.; Qian, Y.; Zhou, T.; Qiu, J.; Meng, X. Integrated analysis of ceRNA network reveals prognostic and metastasis associated biomarkers in breast cancer. Front. Oncol., 2021, 11, 670138.
[http://dx.doi.org/10.3389/fonc.2021.670138] [PMID: 34055638]
[25]
Liu, Z.Q.; Zhang, G.T.; Jiang, L.; Li, C.Q.; Chen, Q.T.; Luo, D.Q. Construction and comparison of CERNA regulatory network for different age female breast cancer. Front. Genet., 2021, 12, 603544.
[http://dx.doi.org/10.3389/fgene.2021.603544] [PMID: 33968126]
[26]
Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet., 2011, 12(12), 861-874.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[27]
St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet., 2015, 31(5), 239-251.
[http://dx.doi.org/10.1016/j.tig.2015.03.007] [PMID: 25869999]
[28]
Hannafon, B.N.; Sebastiani, P.; de las Morenas, A.; Lu, J.; Rosenberg, C.L. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res., 2011, 13(2), R24.
[http://dx.doi.org/10.1186/bcr2839] [PMID: 21375733]
[29]
Venkatesh, J.; Wasson, M.C.D.; Brown, J.M.; Fernando, W.; Marcato, P. LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett., 2021, 509, 81-88.
[http://dx.doi.org/10.1016/j.canlet.2021.04.002] [PMID: 33848519]
[30]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[31]
Bracken, C.P.; Scott, H.S.; Goodall, G.J. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet., 2016, 17(12), 719-732.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[32]
Fabris, L.; Ceder, Y.; Chinnaiyan, A.M.; Jenster, G.W.; Sorensen, K.D.; Tomlins, S.; Visakorpi, T.; Calin, G.A. The potential of microRNAs as prostate cancer biomarkers. Eur. Urol., 2016, 70(2), 312-322.
[http://dx.doi.org/10.1016/j.eururo.2015.12.054] [PMID: 26806656]
[33]
Saito, K.; Inagaki, K.; Kamimoto, T.; Ito, Y.; Sugita, T.; Nakajo, S.; Hirasawa, A.; Iwamaru, A.; Ishikura, T.; Hanaoka, H.; Okubo, K.; Onozaki, T.; Zama, T. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer. PLoS One, 2013, 8(8), e71480.
[http://dx.doi.org/10.1371/journal.pone.0071480] [PMID: 23967217]
[34]
Zhong, G.; Lou, W.; Yao, M.; Du, C.; Wei, H.; Fu, P. Identification of novel mRNA-miRNA-lncRNA competing endogenous RNA network associated with prognosis of breast cancer. Epigenomics, 2019, 11(13), 1501-1518.
[http://dx.doi.org/10.2217/epi-2019-0209] [PMID: 31502865]
[35]
Cabarcas-Petroski, S.; Meneses, P.I.; Schramm, L. A meta-analysis of BRF2 as a prognostic biomarker in invasive breast carcinoma. BMC Cancer, 2020, 20(1), 1093.
[http://dx.doi.org/10.1186/s12885-020-07569-8] [PMID: 33176745]
[36]
Papadakis, E.S.; Reeves, T.; Robson, N.H.; Maishman, T.; Packham, G.; Cutress, R.I. BAG-1 as a biomarker in early breast cancer prognosis: A systematic review with meta-analyses. Br. J. Cancer, 2017, 116(12), 1585-1594.
[http://dx.doi.org/10.1038/bjc.2017.130] [PMID: 28510570]
[37]
Zhou, Q.; Hu, W.; Zhu, W.; Zhang, F.; Lin-lin, L.; Liu, C.; Songyang, Y.; Sun, C.; Li, D. Long non coding RNA XIST as a prognostic cancer marker: A meta-analysis. Clin. Chim. Acta, 2018, 482, 1-7.
[http://dx.doi.org/10.1016/j.cca.2018.03.016] [PMID: 29577911]
[38]
Parca, L.; Pepe, G.; Pietrosanto, M.; Galvan, G.; Galli, L.; Palmeri, A.; Sciandrone, M.; Ferrè, F.; Ausiello, G.; Helmer-Citterich, M. Modeling cancer drug response through drug-specific informative genes. Sci. Rep., 2019, 9(1), 15222.
[http://dx.doi.org/10.1038/s41598-019-50720-0] [PMID: 31645597]
[39]
Barrios, C.H. Global challenges in breast cancer detection and treatment. Breast, 2022, 62(1), S3-S6.
[http://dx.doi.org/10.1016/j.breast.2022.02.003]
[40]
Pau Ni, I.B.; Zakaria, Z.; Muhammad, R.; Abdullah, N.; Ibrahim, N.; Aina Emran, N.; Hisham Abdullah, N.; Syed Hussain, S.N.A. Gene expression patterns distinguish breast carcinomas from normal breast tissues: The Malaysian context. Pathol. Res. Pract., 2010, 206(4), 223-228.
[http://dx.doi.org/10.1016/j.prp.2009.11.006] [PMID: 20097481]
[41]
Colak, D.; Nofal, A.; AlBakheet, A.; Nirmal, M.; Jeprel, H.; Eldali, A. AL-Tweigeri, T.; Tulbah, A.; Ajarim, D.; Malik, O.A.; Inan, M.S.; Kaya, N.; Park, B.H.; Bin Amer, S.M. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One, 2013, 8(5), e63204.
[http://dx.doi.org/10.1371/journal.pone.0063204] [PMID: 23704896]
[42]
Clarke, C.; Madden, S.F.; Doolan, P.; Aherne, S.T.; Joyce, H.; O’Driscoll, L.; Gallagher, W.M.; Hennessy, B.T.; Moriarty, M.; Crown, J.; Kennedy, S.; Clynes, M. Correlating transcriptional networks to breast cancer survival: A large-scale coexpression analysis. Carcinogenesis, 2013, 34(10), 2300-2308.
[http://dx.doi.org/10.1093/carcin/bgt208] [PMID: 23740839]
[43]
Gruosso, T.; Mieulet, V.; Cardon, M.; Bourachot, B.; Kieffer, Y.; Devun, F.; Dubois, T.; Dutreix, M.; Vincent-Salomon, A.; Miller, K.M.; Mechta-Grigoriou, F. Chronic oxidative stress promotes H2 AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol. Med., 2016, 8(5), 527-549.
[http://dx.doi.org/10.15252/emmm.201505891] [PMID: 27006338]
[44]
Maire, V.; Némati, F.; Richardson, M.; Vincent-Salomon, A.; Tesson, B.; Rigaill, G.; Gravier, E.; Marty-Prouvost, B.; De Koning, L.; Lang, G.; Gentien, D.; Dumont, A.; Barillot, E.; Marangoni, E.; Decaudin, D.; Roman-Roman, S.; Pierré, A.; Cruzalegui, F.; Depil, S.; Tucker, G.C.; Dubois, T. Polo-like kinase 1: A potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res., 2013, 73(2), 813-823.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2633] [PMID: 23144294]
[45]
Brouwer-Visser, J.; Cheng, W.Y.; Bauer-Mehren, A.; Maisel, D.; Lechner, K.; Andersson, E.; Dudley, J.T.; Milletti, F. Regulatory T-cell genes drive altered immune microenvironment in adult solid cancers and allow for immune contextual patient subtyping. Cancer Epidemiol. Biomarkers Prev., 2018, 27(1), 103-112.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0461] [PMID: 29133367]
[46]
Polycarpou-Schwarz, M.; Groß, M.; Mestdagh, P.; Schott, J.; Grund, S.E.; Hildenbrand, C.; Rom, J.; Aulmann, S.; Sinn, H.P.; Vandesompele, J.; Diederichs, S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34), 4750-4768.
[http://dx.doi.org/10.1038/s41388-018-0281-5] [PMID: 29765154]
[47]
Tang, L.; Chen, Y.; Tang, X.; Wei, D.; Xu, X.; Yan, F. Long Noncoding RNA DCST1-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by forming a positive regulatory loop with miR-873-5p and MYC. J. Cancer, 2020, 11(2), 311-323.
[http://dx.doi.org/10.7150/jca.33982] [PMID: 31897227]
[48]
Han, Y.J.; Boatman, S.M.; Zhang, J.; Du, X.C.; Yeh, A.C.; Zheng, Y.; Mueller, J.; Olopade, O.I. LncRNA BLAT1 is upregulated in basal-like breast cancer through epigenetic modifications. Sci. Rep., 2018, 8(1), 15572.
[http://dx.doi.org/10.1038/s41598-018-33629-y] [PMID: 30349062]
[49]
Li, Z.; Li, Y.; Wang, X.; Yang, Q. Identification of a six-immune-related long non-coding rna signature for predicting survival and immune infiltrating status in breast cancer. Front. Genet., 2020, 11, 680.
[http://dx.doi.org/10.3389/fgene.2020.00680] [PMID: 32733537]
[50]
Cimino, D.; De Pittà, C.; Orso, F.; Zampini, M.; Casara, S.; Penna, E.; Quaglino, E.; Forni, M.; Damasco, C.; Pinatel, E.; Ponzone, R.; Romualdi, C.; Brisken, C.; De Bortoli, M.; Biglia, N.; Provero, P.; Lanfranchi, G.; Taverna, D. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J., 2013, 27(3), 1223-1235.
[http://dx.doi.org/10.1096/fj.12-214692] [PMID: 23233531]
[51]
Romero-Cordoba, S.; Rodriguez-Cuevas, S.; Rebollar-Vega, R.; Quintanar-Jurado, V.; Maffuz-Aziz, A.; Jimenez-Sanchez, G.; Bautista-Piña, V.; Arellano-Llamas, R.; Hidalgo-Miranda, A. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One, 2012, 7(3), e31904.
[http://dx.doi.org/10.1371/journal.pone.0031904] [PMID: 22438871]
[52]
Lee, C.H.; Kuo, W.H.; Lin, C.C.; Oyang, Y.J.; Huang, H.C.; Juan, H.F. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int. J. Mol. Sci., 2013, 14(6), 11560-11606.
[http://dx.doi.org/10.3390/ijms140611560] [PMID: 23722663]
[53]
Volders, P.J.; Anckaert, J.; Verheggen, K.; Nuytens, J.; Martens, L.; Mestdagh, P.; Vandesompele, J. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res., 2019, 47(D1), D135-D139.
[http://dx.doi.org/10.1093/nar/gky1031] [PMID: 30371849]
[54]
Hsu, S.D.; Lin, F.M.; Wu, W.Y.; Liang, C.; Huang, W.C.; Chan, W.L.; Tsai, W.T.; Chen, G.Z.; Lee, C.J.; Chiu, C.M.; Chien, C.H.; Wu, M.C.; Huang, C.Y.; Tsou, A.P.; Huang, H.D. miRTarBase: A database curates experimentally validated microRNA–target interactions. Nucleic Acids Res., 2011, 39(Database issue (1)), D163-D169.
[http://dx.doi.org/10.1093/nar/gkq1107] [PMID: 21071411]
[55]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10), e0206239.
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[56]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[57]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[58]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[59]
Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep., 2021, 11(1), 6047.
[http://dx.doi.org/10.1038/s41598-021-84787-5] [PMID: 33723286]
[60]
Liu, C.J.; Hu, F.F.; Xia, M.X.; Han, L.; Zhang, Q.; Guo, A.Y. GSCALite: A web server for gene set cancer analysis. Bioinformatics, 2018, 34(21), 3771-3772.
[http://dx.doi.org/10.1093/bioinformatics/bty411] [PMID: 29790900]
[61]
Yingtaweesittikul, H.; Wu, J.; Mongia, A.; Peres, R.; Ko, K.; Nagarajan, N.; Suphavilai, C. CREAMMIST: An integrative probabilistic database for cancer drug response prediction. Nucleic Acids Res., 2023, 51(D1), D1242-D1248.
[http://dx.doi.org/10.1093/nar/gkac911] [PMID: 36259664]
[62]
Kong, W.; He, L.; Coppola, M.; Guo, J.; Esposito, N.N.; Coppola, D.; Cheng, J.Q. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem., 2010, 285(23), 17869-17879.
[http://dx.doi.org/10.1074/jbc.M110.101055] [PMID: 20371610]
[63]
Yan, L.X.; Huang, X.F.; Shao, Q.; Huang, M.A.Y.; Deng, L.; Wu, Q.L.; Zeng, Y.X.; Shao, J.Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008, 14(11), 2348-2360.
[http://dx.doi.org/10.1261/rna.1034808] [PMID: 18812439]
[64]
Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; Cokelaer, T.; Greninger, P.; van Dyk, E.; Chang, H.; de Silva, H.; Heyn, H.; Deng, X.; Egan, R.K.; Liu, Q.; Mironenko, T.; Mitropoulos, X.; Richardson, L.; Wang, J.; Zhang, T.; Moran, S.; Sayols, S.; Soleimani, M.; Tamborero, D.; Lopez-Bigas, N.; Ross-Macdonald, P.; Esteller, M.; Gray, N.S.; Haber, D.A.; Stratton, M.R.; Benes, C.H.; Wessels, L.F.A.; Saez-Rodriguez, J.; McDermott, U.; Garnett, M.J. A landscape of pharmacogenomic interactions in cancer. Cell, 2016, 166(3), 740-754.
[http://dx.doi.org/10.1016/j.cell.2016.06.017] [PMID: 27397505]
[65]
Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep., 2015, 5(1), 17417.
[http://dx.doi.org/10.1038/srep17417] [PMID: 26615774]
[66]
Yang, L.; Price, E.T.; Chang, C.W.; Li, Y.; Huang, Y.; Guo, L.W.; Guo, Y.; Kaput, J.; Shi, L.; Ning, B. Gene expression variability in human hepatic drug metabolizing enzymes and transporters. PLoS One, 2013, 8(4), e60368.
[http://dx.doi.org/10.1371/journal.pone.0060368] [PMID: 23637747]
[67]
Huang, Y.; Furuno, M.; Arakawa, T.; Takizawa, S.; de Hoon, M.; Suzuki, H.; Arner, E. A framework for identification of on- and off-target transcriptional responses to drug treatment. Sci. Rep., 2019, 9(1), 17603.
[http://dx.doi.org/10.1038/s41598-019-54180-4] [PMID: 31772269]
[68]
Jagosky, M.; Tan, A.R. Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: A review of the emerging clinical data. Breast Cancer, 2021, 13, 393-407.
[http://dx.doi.org/10.2147/BCTT.S176514] [PMID: 34163239]
[69]
Vural, S.; Palmisano, A.; Reinhold, W.C.; Pommier, Y.; Teicher, B.A.; Krushkal, J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin. Epigenetics, 2021, 13(1), 49.
[http://dx.doi.org/10.1186/s13148-021-01026-4] [PMID: 33676569]
[70]
Alam, M.S.; Sultana, A.; Sun, H.; Wu, J.; Guo, F.; Li, Q.; Ren, H.; Hao, Z.; Zhang, Y.; Wang, G. Bioinformatics and network-based screening and discovery of potential molecular targets and small molecular drugs for breast cancer. Front. Pharmacol., 2022, 13, 942126.
[http://dx.doi.org/10.3389/fphar.2022.942126] [PMID: 36204232]
[71]
Lee, H.Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li Shen, Y. Chen, X.H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. FDA Approval: Belinostat for the treatment of patients with relapsed or refractory peripheral t-cell lymphoma. Clin. Cancer Res., 2015, 21(12), 2666-2670.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3119] [PMID: 25802282]
[72]
Liu, S.; Zhang, H.L.; Li, J.; Ye, Z.P.; Du, T.; Li, L.C.; Guo, Y.Q.; Yang, D.; Li, Z.L.; Cao, J.H.; Hu, B.X.; Chen, Y.H.; Feng, G.K.; Li, Z.M.; Deng, R.; Huang, J.J.; Zhu, X.F. Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol., 2023, 62, 102677.
[http://dx.doi.org/10.1016/j.redox.2023.102677] [PMID: 36989572]
[73]
Fan, Y.; Wang, M.; Li, Z.; Jiang, H.; Shi, J.; Shi, X.; Liu, S.; Zhao, J.; Kong, L.; Zhang, W.; Ma, L. Intake of soy. Front. Nutr., 2022, 9, 847421.
[http://dx.doi.org/10.3389/fnut.2022.847421] [PMID: 35308286]
[74]
Zarei, M.; Malekzadeh, K.; Omidi, M.; Mousavi, P. Clinical significance of long non-coding RNA ZEB2-AS1 and EMT-related markers in ductal and lobular breast cancer. Cancer Rep., 2023, 6(5), e1826.
[http://dx.doi.org/10.1002/cnr2.1826] [PMID: 37088469]
[75]
Yu, Y.; Gao, F.; He, Q.; Li, G.; Ding, G. lncRNA UCA1 functions as a ceRNA to promote prostate cancer progression via sponging miR143. Mol. Ther. Nucleic Acids, 2020, 19, 751-758.
[http://dx.doi.org/10.1016/j.omtn.2019.11.021] [PMID: 31954329]
[76]
Wang, L.; Luan, T.; Zhou, S.; Lin, J.; Yang, Y.; Liu, W.; Tong, X.; Jiang, W. LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Med., 2019, 8(9), 4389-4403.
[http://dx.doi.org/10.1002/cam4.2335] [PMID: 31215169]
[77]
Qin, C.X.; Yang, X.Q.; Jin, G.C.; Zhan, Z.Y. LncRNA TSLNC8 inhibits proliferation of breast cancer cell through the miR-214-3p/FOXP2 axis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(19), 8440-8448.
[PMID: 31646574]
[78]
Bai, W.; Peng, H.; Zhang, J.; Zhao, Y.; Li, Z.; Feng, X.; Zhang, J.; Liang, F.; Wang, L.; Zhang, N.; Li, Y.; Zhu, H.; Ji, Q. LINC00589-dominated ceRNA networks regulate multiple chemoresistance and cancer stem cell-like properties in HER2+ breast cancer. NPJ Breast Cancer, 2022, 8(1), 115.
[http://dx.doi.org/10.1038/s41523-022-00484-0] [PMID: 36309503]
[79]
Shen, J.; Liang, C.; Su, X.; Wang, Q.; Ke, Y.; Fang, J.; Zhang, D.; Duan, S. Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis. Biomark. Res., 2022, 10(1), 72.
[http://dx.doi.org/10.1186/s40364-022-00419-8] [PMID: 36175921]
[80]
Chen, Z.; Feng, R.; Kahlert, U.D.; Chen, Z.; Torres-dela Roche, L.A.; Soliman, A.; Miao, C.; De Wilde, R.L.; Shi, W. Construction of cerna networks associated with cd8 t cells in breast cancer. Front. Oncol., 2022, 12, 883197.
[http://dx.doi.org/10.3389/fonc.2022.883197] [PMID: 35756601]
[81]
Wang, J.J.; Huang, Y.Q.; Song, W.; Li, Y.F.; Wang, H.; Wang, W.J.; Huang, M. Comprehensive analysis of the lncRNA associated competing endogenous RNA network in breast cancer. Oncol. Rep., 2019, 42(6), 2572-2582.
[http://dx.doi.org/10.3892/or.2019.7374] [PMID: 31638237]
[82]
Guo, W.; Wang, Q.; Zhan, Y.; Chen, X.; Yu, Q.; Zhang, J.; Wang, Y.; Xu, X.; Zhu, L. Transcriptome sequencing uncovers a three–long noncoding RNA signature in predicting breast cancer survival. Sci. Rep., 2016, 6(1), 27931.
[http://dx.doi.org/10.1038/srep27931] [PMID: 27338266]
[83]
Dong, Y.; Xiao, Y.; Shi, Q.; Jiang, C. Dysregulated lncRNA-miRNA-mRNA network reveals patient survival-associated modules and RNA binding proteins in invasive breast carcinoma. Front. Genet., 2020, 10, 1284.
[http://dx.doi.org/10.3389/fgene.2019.01284] [PMID: 32010179]