Exosome miR-30a-5p Regulates Glomerular Endothelial Cells' EndMT and Angiogenesis by Modulating Notch1/VEGF Signaling Pathway

Page: [159 - 177] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Endothelial-mesenchymal transition (EndMT) and endothelial damage lead to abnormal angiogenesis in DN.

Objectives: This study aimed to investigate the role of exosome miR-30a-5p in high glucose (HG)-induced glomerular endothelial cells (GECs) dysfunction and explore the underlying mechanisms.

Methods: GECs were cultured in normal glucose (5.5 mM) and HG (30 mM) conditions. The recipient GECs were transfected with exosome or miR-30a-5p mimic/inhibitor and then detected by using CCK-8 and flow cytometry assay. Luciferase analysis was used to verify miR-30a-5p acted on notch homolog protein 1 (Notch1). RT-qPCR and Western blot were used to detect the expression of VE-cadherin, α-SMA, vascular endothelial growth factor (VEGF) and Notch1. In vivo, exosome miR-30a-5p was administered to DN mice, and periodic acid-Schiff (PAS) staining, UTP levels, and HbA1c levels were measured.

Results: The expression of miR-30a-5p was downregulated in HG-treated GECs. Exosome miR-30a-5p significantly promoted cell proliferation, and migration and reduced apoptosis of GECs under HG conditions. MiR-30a-5p directly targeted the 3-UTR region of Notch1. Exosome miR-30a-5p reduced the expression levels of Notch1 and VEGF, both at mRNA and protein levels. Furthermore, exosome miR-30a-5p inhibited HG-induced EndMT, as evidenced by increased VE-cadherin and reduced α-SMA. In vivo studies demonstrated that exosome miR-30a-5p reduced serum HbA1c levels and 24-hour urine protein quantification.

Conclusion: This study provides evidence that exosome miR-30a-5p suppresses EndMT and abnormal angiogenesis of GECs by modulating the Notch1/VEGF signaling pathway. These findings suggest that exosome miR-30a-5p could be a potential therapeutic strategy for the treatment of DN.

Graphical Abstract

[1]
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, et al. Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int 2023; 103(2): 282-96.
[http://dx.doi.org/10.1016/j.kint.2022.10.030] [PMID: 36470394]
[2]
Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci 2013; 124(3): 139-52.
[3]
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13: 958790.
[http://dx.doi.org/10.3389/fimmu.2022.958790] [PMID: 36045667]
[4]
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22(S1): 16-31.
[http://dx.doi.org/10.1111/dom.13969] [PMID: 32267077]
[5]
Zhang J, Chen S, Xiang H, et al. S1PR2/Wnt3a/RhoA/ROCK1/β-catenin signaling pathway promotes diabetic nephropathy by inducting endothelial mesenchymal transition and impairing endothelial barrier function. Life Sci 2023; 328: 121853.
[http://dx.doi.org/10.1016/j.lfs.2023.121853] [PMID: 37307963]
[6]
Shen Y, Chen W, Han L, et al. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm Sin B 2021; 11(1): 127-42.
[http://dx.doi.org/10.1016/j.apsb.2020.07.002] [PMID: 33532185]
[7]
Kundu N, Nandula SR, Asico LD, et al. Transplantation of apoptosis-resistant endothelial progenitor cells improves renal function in diabetic kidney disease. J Am Heart Assoc 2021; 10(7): e019365.
[http://dx.doi.org/10.1161/JAHA.120.019365] [PMID: 33759548]
[8]
Balakrishnan B, Gupta A, Basri R, et al. Endothelial-specific expression of CIDEC improves high-fat diet–induced vascular and metabolic dysfunction. Diabetes 2023; 72(1): 19-32.
[http://dx.doi.org/10.2337/db22-0294] [PMID: 36256836]
[9]
Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem Biol Interact 2016; 245: 1-11.
[http://dx.doi.org/10.1016/j.cbi.2015.11.033] [PMID: 26680107]
[10]
Chyła G, Sałaga-Zaleska K, Dąbkowski K, Kuchta A, Jankowski M. Suramin enhances the urinary excretion of VEGF-A in normoglycemic and streptozotocin-induced diabetic rats. Pharmacol Rep 2021; 73(3): 841-6.
[http://dx.doi.org/10.1007/s43440-021-00236-0] [PMID: 33635529]
[11]
Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 2001; 12(7): 1448-57.
[http://dx.doi.org/10.1681/ASN.V1271448] [PMID: 11423573]
[12]
Ostendorf T, Kunter U, Eitner F, et al. VEGF165 mediates glomerular endothelial repair. J Clin Invest 1999; 104(7): 913-23.
[http://dx.doi.org/10.1172/JCI6740] [PMID: 10510332]
[13]
Hanna RM, Barsoum M, Arman F, Selamet U, Hasnain H, Kurtz I. Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: emerging evidence. Kidney Int 2019; 96(3): 572-80.
[http://dx.doi.org/10.1016/j.kint.2019.02.042] [PMID: 31229276]
[14]
Perez-Fidalgo JA, Ortega B, Simon S, Samartzis EP, Boussios S. NOTCH signalling in ovarian cancer angiogenesis. Ann Transl Med 2020; 8(24): 1705.
[http://dx.doi.org/10.21037/atm-20-4497] [PMID: 33490217]
[15]
Yang JH, Wylie-Sears J, Bischoff J. Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochem Biophys Res Commun 2008; 374(3): 512-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.057] [PMID: 18647596]
[16]
Ai X, Yu P, Luo L, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway. J Ethnopharmacol 2022; 296: 115453.
[http://dx.doi.org/10.1016/j.jep.2022.115453] [PMID: 35697191]
[17]
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ 2020; 27(1): 210-26.
[http://dx.doi.org/10.1038/s41418-019-0349-y] [PMID: 31097789]
[18]
He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021; 11(6): e468.
[http://dx.doi.org/10.1002/ctm2.468] [PMID: 34185424]
[19]
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13(1): 25.
[http://dx.doi.org/10.1186/s13287-021-02696-w] [PMID: 35073973]
[20]
Xu YX, Pu SD, Li X, et al. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res 2022; 178: 106135.
[http://dx.doi.org/10.1016/j.phrs.2022.106135] [PMID: 35192956]
[21]
Huang X, Tan J, Li Y, et al. Expression of LncRNA KCNQ1Ot1 in diabetic nephropathy and its correlation with MEK/ERK signaling pathway. Am J Transl Res 2022; 14(3): 1796-806.
[PMID: 35422925]
[22]
Chen Z, Zhang J, Zhang Z, et al. The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis 2017; 8(6): e2859.
[http://dx.doi.org/10.1038/cddis.2017.252] [PMID: 28569782]
[23]
Ciavarella C, Motta I, Vasuri F, et al. Involvement of miR-30a-5p and miR-30d in endothelial to mesenchymal transition and early osteogenic commitment under inflammatory stress in HUVEC. Biomolecules 2021; 11(2): 226.
[http://dx.doi.org/10.3390/biom11020226] [PMID: 33562690]
[24]
Chen Z, Li R, Pei LG, et al. High-mobility group box-1 promotes vascular calcification in diabetic mice via endoplasmic reticulum stress. J Cell Mol Med 2021; 25(8): 3724-34.
[http://dx.doi.org/10.1111/jcmm.16075] [PMID: 33724642]
[25]
Murinello S, Usui Y, Sakimoto S, et al. miR-30a-5p inhibition promotes interaction of Fas + endothelial cells and FasL + microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia 2019; 67(2): 332-44.
[http://dx.doi.org/10.1002/glia.23543] [PMID: 30484883]
[26]
Yang X, Yang M, Chen Y, et al. miR-30a-5p targets Becn1 to ameliorate high-glucose-induced glomerular podocyte injury in immortalized rat podocyte cell line. Am J Transl Res 2021; 13(3): 1516-25.
[PMID: 33841675]
[27]
Zhao Y, Gavai A V, Patrice G. Fluoroalkyl and fluorocycloalkyl 1,4-benzodiazepinone compounds as notch inhibitors. Patent WO2014047397A1, 2016.
[28]
Tang Z, Hu S, Wu Z, He M. Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3. Mol Med 2023; 29(1): 96.
[http://dx.doi.org/10.1186/s10020-023-00695-6] [PMID: 37438701]
[29]
Tagaya M, Kume S, Yasuda-Yamahara M, et al. Inhibition of mitochondrial fission protects podocytes from albumin-induced cell damage in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868(5): 166368.
[http://dx.doi.org/10.1016/j.bbadis.2022.166368] [PMID: 35202791]
[30]
Tanabe K, Maeshima Y, Sato Y, Wada J. Antiangiogenic therapy for diabetic nephropathy. BioMed Res Int 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/5724069] [PMID: 28835895]
[31]
Nakagawa T, Sato W, Kosugi T, Johnson RJ. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. J Diabetes Res 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/184539] [PMID: 24386643]
[32]
Gao W, Sweeney C, Walsh C, et al. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann Rheum Dis 2013; 72(6): 1080-8.
[http://dx.doi.org/10.1136/annrheumdis-2012-201978] [PMID: 23161900]
[33]
Majumder S, Advani A. VEGF and the diabetic kidney: More than too much of a good thing. J Diabetes Complications 2017; 31(1): 273-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.10.020] [PMID: 27836681]
[34]
Lin CL, Wang FS, Hsu YC, et al. Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy. Diabetes 2010; 59(8): 1915-25.
[http://dx.doi.org/10.2337/db09-0663] [PMID: 20522599]
[35]
Zhang A, Fang H, Chen J, He L, Chen Y. Role of VEGF-A and LRG1 in abnormal angiogenesis associated with diabetic nephropathy. Front Physiol 2020; 11: 1064.
[http://dx.doi.org/10.3389/fphys.2020.01064] [PMID: 32982792]
[36]
wu A, Luo N, Xu , Du N, Li L, Liu Q. Exosomal LBH inhibits epithelial-mesenchymal transition and angiogenesis in nasopharyngeal carcinoma via downregulating VEGFA signaling. Int J Biol Sci 2022; 18(1): 242-60.
[http://dx.doi.org/10.7150/ijbs.66506] [PMID: 34975330]
[37]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[38]
Cui C, Zang N, Song J, et al. Exosomes derived from mesenchymal stem cells attenuate diabetic kidney disease by inhibiting cell apoptosis and epithelial-to-mesenchymal transition via miR-424-5p. FASEB J 2022; 36(10): e22517.
[http://dx.doi.org/10.1096/fj.202200488R] [PMID: 36036527]
[39]
Wang Z, Sun W, Li R, Liu Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered 2022; 13(3): 7683-96.
[http://dx.doi.org/10.1080/21655979.2021.2023794] [PMID: 35291915]
[40]
Zhang W, Zhang C, Chen H, et al. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin J Am Soc Nephrol 2014; 9(9): 1545-52.
[http://dx.doi.org/10.2215/CJN.11561113] [PMID: 25107948]
[41]
Gao N, Xiao L, Tao Z, Zheng Y, Wang W, Huang H. Preliminary research of main components of Dll4/ Notch-VEGF signaling pathway under high-glucose stimulation in vitro. Diabetes Metab Syndr Obes 2022; 15: 1165-71.
[http://dx.doi.org/10.2147/DMSO.S355004] [PMID: 35464260]
[42]
Gao R, Wu Y, Yang Q, et al. The interaction of apelin and FGFR1 ameliorated the kidney fibrosis through suppression of TGFβ-induced endothelial-to-mesenchymal transition. Oxid Med Cell Longev 2023; 2023: 1-18.
[http://dx.doi.org/10.1155/2023/5012474] [PMID: 36785790]
[43]
Yu C, Xiong C, Tang J, et al. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Theranostics 2021; 11(6): 2706-21.
[http://dx.doi.org/10.7150/thno.48679] [PMID: 33456568]
[44]
Nakamura K, Chiba C. Evidence for Notch signaling involvement in retinal regeneration of adult newt. Brain Res 2007; 1136(1): 28-42.
[http://dx.doi.org/10.1016/j.brainres.2006.12.032] [PMID: 17217933]
[45]
Chen Y, Zhao B, Zhu Y, Zhao H, Ma C. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am J Transl Res 2019; 11(5): 2969-82.
[PMID: 31217867]
[46]
Wu YX, Xu RY, Jiang L, Chen X-Y, Xiao X-J. MicroRNA-30a-5p promotes chronic heart failure in rats by targeting sirtuin-1 to activate the nuclear factor-κB/NOD-like receptor 3 signaling pathway. Cardiovasc Drugs Ther 2022: 1-2.
[http://dx.doi.org/10.1007/s10557-021-07304-w]
[47]
Earle A, Bessonny M, Benito J, et al. Urinary exosomal MicroRNAs as biomarkers for obesity-associated chronic kidney disease. J Clin Med 2022; 11(18): 5271.
[http://dx.doi.org/10.3390/jcm11185271] [PMID: 36142918]