Letters in Drug Design & Discovery

Author(s): Yue-Zi Wei, Mei-Zhu Yang and Wei Yuan*

DOI: 10.2174/1570180820666230914104206

Network Pharmacological Study of the Active Ingredient of Panax Notoginseng Saponins for the Treatment of Lung Cancer by Inhibiting AKR1C3

Page: [1546 - 1554] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Lung cancer is the malignancy with the second highest diagnostic rate and the leading cause of cancer-related death.

Objective: This study aims to investigate the potential mechanism and molecular targets of Panax notoginseng saponins (PNS) in inhibiting lung cancer through network pharmacology.

Methods: Pharmacodynamic targets of each compound of PNS were searched from TargetNet, SwissTargetPrediction, and BatMan-TCM databases. Next, the differential expression genes (DEGs) in lung cancer were obtained from the Gene Expression Omnibus (GEO) database and screened by R package. Later, the STRING 11.0 database was utilized to analyze the protein-protein interaction (PPI) network of common targets of PNS-lung cancer, clusterProfiler to perform gene ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the common targets, and Cytoscape 3.8.0 to construct and analyze the "ingredient-target" network for the common targets of PNS-lung cancer.

Results: A total of 154 potential pharmacodynamic targets of PNS, 2399 DEGs of lung cancer-related diseases, and 21 common targets of PNS-lung cancer were obtained by database search and screening. The 21 common targets were mainly involved in biological processes (such as small molecule metabolism and cytokine production) and were major components of cellular structures (such as neuronal cell bodies and membrane rafts). Besides, these targets could function as carboxylic ester hydrolases, G protein-coupled amine receptors, and oxidoreductase. They were mainly enriched in 14 signaling pathways, like neuroactive ligand-receptor interaction, regulation of lipolysis in adipocytes, and calcium signaling pathway. Furthermore, the molecular docking results revealed that aldo-keto reductase family 1 member C3 (AKR1C3) and melanin metabolic enzyme (MME) may be direct targets of ginsenoside Rg1 and notoginsenoside R2.

Conclusion: Our study showed that ginsenosides inhibit the progression of lung cancer through multiple targets and pathways. More importantly, PNS may treat lung cancer by directly inhibiting AKR1C3.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Ni, J. Based on the analysis of global cancer data, changes in China’s cancer spectrum provide a basis for formulating early screening and early diagnosis strategies for cancer in China. China Medical News, 2021, 36(7), 1.
[3]
Cao, M.; Li, H.; Sun, D.; Chen, W. Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun., 2020, 40(5), 205-210.
[http://dx.doi.org/10.1002/cac2.12025] [PMID: 32359212]
[4]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[5]
Yang, S.; Zhang, Z.; Wang, Q. Emerging therapies for small cell lung cancer. J. Hematol. Oncol., 2019, 12(1), 47.
[http://dx.doi.org/10.1186/s13045-019-0736-3] [PMID: 31046803]
[6]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[7]
Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med., 2011, 365(5), 395-409.
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[8]
Hung, J-J.; Hsu, W-H.; Hsieh, C-C.; Huang, B-S.; Huang, M-H.; Liu, J-S.; Wu, Y-C. Post-recurrence survival in completely resected stage I non-small cell lung cancer with local recurrence. Thorax, 2009, 64(3), 192-196.
[http://dx.doi.org/10.1136/thx.2007.094912] [PMID: 19252018]
[9]
Chaft, J.E.; Shyr, Y.; Sepesi, B.; Forde, P.M. Preoperative and postoperative systemic therapy for operable non–small-cell lung cancer. J. Clin. Oncol., 2022, 40(6), 546-555.
[http://dx.doi.org/10.1200/JCO.21.01589] [PMID: 34985966]
[10]
Gu, L.P.; Ye, X.Y.; Xu, Y.H.; Hou, W.X.; Li, J.Q.; Yao, J.L.; Bi, L.; Lu, S.; Xu, L. A double-blind and randomized controlled clinical trial of traditional Chinese medicine combined with adjuvant chemotherapy for early stage non-small cell lung cancer. Cancer Res. Clin., 2016, 28(6), 394-398.
[11]
Kim, D.H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res., 2012, 36(1), 1-15.
[http://dx.doi.org/10.5142/jgr.2012.36.1.1] [PMID: 23717099]
[12]
Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol., 2016, 188, 234-258.
[http://dx.doi.org/10.1016/j.jep.2016.05.005] [PMID: 27154405]
[13]
Wang, C.Z.; McEntee, E.; Wicks, S.; Wu, J.A.; Yuan, C.S. Phytochemical and analytical studies of Panax notoginseng (Burk.). F.H. Chen. J. Nat. Med., 2006, 60(2), 97-106.
[http://dx.doi.org/10.1007/s11418-005-0027-x]
[14]
Wang, J.R.; Yau, L.F.; Gao, W.N.; Liu, Y.; Yick, P.W.; Liu, L.; Jiang, Z.H. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J. Agric. Food Chem., 2014, 62(36), 9024-9034.
[http://dx.doi.org/10.1021/jf502214x] [PMID: 25118819]
[15]
Choi, B. Hair-growth potential of ginseng and its major metabolites: A review on its molecular mechanisms. Int. J. Mol. Sci., 2018, 19(9), 2703.
[http://dx.doi.org/10.3390/ijms19092703] [PMID: 30208587]
[16]
Wei, J.R.; Wen, X.; Bible, P.W.; Li, Z.; Nussenblatt, R.B.; Wei, L. Panax notoginseng saponin controls IL-17 expression in helper T cells. J. Ocul. Pharmacol. Ther., 2017, 33(4), 285-289.
[http://dx.doi.org/10.1089/jop.2016.0137] [PMID: 28051353]
[17]
Hu, S.; Wu, Y.; Zhao, B.; Hu, H.; Zhu, B.; Sun, Z.; Li, P.; Du, S. Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/Akt/Nrf2 antioxidant signaling pathway. Molecules, 2018, 23(11), 2781.
[http://dx.doi.org/10.3390/molecules23112781] [PMID: 30373188]
[18]
Zhou, L.; Huang, P.P.; Chen, L.L.; Wang, P. Panax notoginseng saponins ameliorate A β-Mediated neurotoxicity in C. elegans through antioxidant activities. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/7621043] [PMID: 31275419]
[19]
Chen, L.; Chen, M.Y.; Shao, L.; Zhang, W.; Rao, T.; Zhou, H.H.; Huang, W.H. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: The role of gut microbiota. Chin. J. Nat. Med., 2020, 18(7), 500-507.
[http://dx.doi.org/10.1016/S1875-5364(20)30060-1] [PMID: 32616190]
[20]
Xiong, Y.; Halima, M.; Che, X.; Zhang, Y.; Schaaf, M.J.M.; Li, M.; Gao, M.; Guo, L.; Huang, Y.; Cui, X.; Wang, M. Steamed Panax notoginseng and its saponins inhibit the migration and induce the apoptosis of neutrophils in a zebrafish tail-fin amputation model. Front. Pharmacol., 2022, 13, 946900.
[http://dx.doi.org/10.3389/fphar.2022.946900] [PMID: 35873541]
[21]
Zhang, X.; Zhang, B.; Zhang, C.; Sun, G.; Sun, X. Effect of Panax notoginseng saponins and major anti-obesity components on weight loss. Front. Pharmacol., 2021, 11, 601751.
[http://dx.doi.org/10.3389/fphar.2020.601751] [PMID: 33841133]
[22]
Uzayisenga, R.; Ayeka, P.A.; Wang, Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): A review. Phytother. Res., 2014, 28(4), 510-516.
[http://dx.doi.org/10.1002/ptr.5026] [PMID: 23846979]
[23]
Duan, L.; Xiong, X.; Hu, J.; Liu, Y.; Li, J.; Wang, J. Panax notoginseng saponins for treating coronary artery disease: A functional and mechanistic overview. Front. Pharmacol., 2017, 8, 702.
[http://dx.doi.org/10.3389/fphar.2017.00702] [PMID: 29089889]
[24]
Liu, S.; Cheng, W.; Shao, J.; Gu, Y.; Zhu, Y.; Dong, Q.; Bai, S.; Wang, P.; Lin, L. Notoginseng saponin Rg1 prevents cognitive impairment through modulating APP processing in Aβ1–42-injected rats. Curr. Med. Sci., 2019, 39(2), 196-203.
[http://dx.doi.org/10.1007/s11596-019-2019-1] [PMID: 31016510]
[25]
Du, Y.; Wang, L.; Qian, J.; Zhang, K.; Chai, K. Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats. Chin. J. Integr. Med., 2016, 22(12), 910-917.
[http://dx.doi.org/10.1007/s11655-015-2446-1] [PMID: 26712211]
[26]
Yang, C.; Wang, J.; Zhao, Y.; Shen, L.; Jiang, X.; Xie, Z.; Liang, N.; Zhang, L.; Chen, Z. Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J. Ethnopharmacol., 2010, 130(2), 231-236.
[http://dx.doi.org/10.1016/j.jep.2010.04.039] [PMID: 20435129]
[27]
Xu, Y.; Wang, N.; Tan, H.Y.; Li, S.; Zhang, C.; Zhang, Z.; Feng, Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics, 2020, 10(24), 11302-11323.
[http://dx.doi.org/10.7150/thno.47746] [PMID: 33042284]
[28]
Li, J.; Yuan, L.; Zhang, G.; Zhou, L.; Gao, Y.; Li, Q.; Chen, C. Activating blood circulation to remove stasis treatment of hypertensive intracerebral hemorrhage: A multi-center prospective randomized open-label blinded-endpoint trial. Chin. J. Integr. Med., 2016, 22(5), 328-334.
[http://dx.doi.org/10.1007/s11655-016-2467-7] [PMID: 27338955]
[29]
Tang, Y.C.; Zhang, Y.; Zhou, J.; Zhi, Q.; Wu, M.Y.; Gong, F.R.; Shen, M.; Liu, L.; Tao, M.; Shen, B.; Gu, D.M.; Yu, J.; Xu, M.D.; Gao, Y.; Li, W. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int. J. Oncol., 2018, 52(1), 127-138.
[PMID: 29115601]
[30]
Li, X.; Tsauo, J.; Geng, C.; Zhao, H.; Lei, X.; Li, X. Ginsenoside Rg3 decreases NHE1 expression via inhibiting EGF-EGFR-ERK1/2-HIF-1α pathway in hepatocellular carcinoma: A novel antitumor mechanism. Am. J. Chin. Med., 2018, 46(8), 1915-1931.
[http://dx.doi.org/10.1142/S0192415X18500969] [PMID: 30525897]
[31]
Chen, X.J.; Zhang, X.J.; Shui, Y.M.; Wan, J.B.; Gao, J.L. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-19.
[http://dx.doi.org/10.1155/2016/5738694] [PMID: 27446225]
[32]
Wang, W.; Wang, H.; Rayburn, E.R.; Zhao, Y.; Hill, D.L.; Zhang, R. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol, a novel natural product for prostate cancer therapy: Activity in vitro and in vivo and mechanisms of action. Br. J. Cancer, 2008, 98(4), 792-802.
[http://dx.doi.org/10.1038/sj.bjc.6604227] [PMID: 18253123]
[33]
Liu, Y.; Fan, D. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct., 2018, 9(11), 5513-5527.
[http://dx.doi.org/10.1039/C8FO01122B] [PMID: 30207362]
[34]
Network pharmacology evaluation method guidance. World Chinese Medicine, 2021, 16(04), 527-532.
[35]
Song, K.; Sun, Y.; Liu, H.; Li, Y.; An, N.; Wang, L.; Zhang, H.; Yang, F.; Xing, Y.; Gao, Y. Network pharmacology and bioinformatics methods reveal the mechanism of berberine in the treatment of ischaemic stroke. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5160329] [PMID: 35815278]
[36]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014, 422((Web server issue)), W32-W38.
[http://dx.doi.org/10.1093/nar/gku293]
[37]
Que, W.; Chen, M.; Yang, L.; Zhang, B.; Zhao, Z.; Liu, M.; Cheng, Y.; Qiu, H. A network pharmacology-based investigation on the bioactive ingredients and molecular mechanisms of Gelsemium elegans Benth against colorectal cancer. BMC Complementary Medicine and Therapies, 2021, 21(1), 99.
[http://dx.doi.org/10.1186/s12906-021-03273-7] [PMID: 33743701]
[38]
Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 2016, 30(5), 413-424.
[http://dx.doi.org/10.1007/s10822-016-9915-2] [PMID: 27167132]
[39]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[40]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechANism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[41]
Gupta, J.A.; Thapa, S.; Verma, M.; Som, R.; Mukherjee, K.J. Genomics and transcriptomics analysis reveals the mechanism of isobutanol tolerance of a laboratory evolved Lactococcus lactis strain. Sci. Rep., 2020, 10(1), 10850.
[http://dx.doi.org/10.1038/s41598-020-67635-w] [PMID: 32616741]
[42]
Hart, T.; Komori, H.; LaMere, S.; Podshivalova, K.; Salomon, D.R. Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics, 2013, 14(1), 778.
[http://dx.doi.org/10.1186/1471-2164-14-778] [PMID: 24215113]
[43]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[44]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[45]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[46]
Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A.; Liu, Y.; Mandal, R.; Neveu, V.; Pon, A.; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res., 2018, 46(D1), D608-D617.
[http://dx.doi.org/10.1093/nar/gkx1089] [PMID: 29140435]
[47]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[48]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[49]
Penning, T.M. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell. Endocrinol., 2019, 489, 82-91.
[http://dx.doi.org/10.1016/j.mce.2018.07.002] [PMID: 30012349]
[50]
Miller, V.L.; Lin, H.K.; Murugan, P.; Fan, M.; Penning, T.M.; Brame, L.S.; Yang, Q.; Fung, K.M. Aldo-keto reductase family 1 member C3 (AKR1C3) is expressed in adenocarcinoma and squamous cell carcinoma but not small cell carcinoma. Int. J. Clin. Exp. Pathol., 2012, 5(4), 278-289.
[PMID: 22670171]
[51]
Guise, C.P.; Abbattista, M.R.; Singleton, R.S.; Holford, S.D.; Connolly, J.; Dachs, G.U.; Fox, S.B.; Pollock, R.; Harvey, J.; Guilford, P.; Doñate, F.; Wilson, W.R.; Patterson, A.V. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res., 2010, 70(4), 1573-1584.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3237] [PMID: 20145130]
[52]
Xie, L.; Yu, J.; Guo, W.; Wei, L.; Liu, Y.; Wang, X.; Song, X. Aldo-keto reductase 1C3 may be a new radioresistance marker in non-small-cell lung cancer. Cancer Gene Ther., 2013, 20(4), 260-266.
[http://dx.doi.org/10.1038/cgt.2013.15] [PMID: 23519145]
[53]
Sun, S.Q.; Gu, X.; Gao, X.S.; Li, Y.; Yu, H.; Xiong, W.; Yu, H.; Wang, W.; Li, Y.; Teng, Y.; Zhou, D. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Oncotarget, 2016, 7(30), 48050-48058.
[http://dx.doi.org/10.18632/oncotarget.10347] [PMID: 27385003]
[54]
Xiong, W.; Zhao, J.; Yu, H.; Li, X.; Sun, S.; Li, Y.; Xia, Q.; Zhang, C.; He, Q.; Gao, X.; Zhang, L.; Zhou, D. Elevated expression of AKR1C3 increases resistance of cancer cells to ionizing radiation via modulation of oxidative stress. PLoS One, 2014, 9(11), e111911.
[http://dx.doi.org/10.1371/journal.pone.0111911] [PMID: 25419901]
[55]
MacLeod, A.K.; Acosta-Jimenez, L.; Coates, P.J.; McMahon, M.; Carey, F.A.; Honda, T.; Henderson, C.J.; Wolf, C.R. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br. J. Cancer, 2016, 115(12), 1530-1539.
[http://dx.doi.org/10.1038/bjc.2016.363] [PMID: 27824809]
[56]
Zhao, S.F.; Wagn, S-G.; Zhao, Z.Y.; Li, W.L. AKR1C1 3, notably AKR1C3, are distinct biomarkers for liver cancer diagnosis and prognosis: Database mining in malignancies. Oncol. Lett., 2019, 18(5), 4515-4522.
[http://dx.doi.org/10.3892/ol.2019.10802] [PMID: 31611960]
[57]
Dozmorov, M.G.; Azzarello, J.T.; Wren, J.D.; Fung, K.M.; Yang, Q.; Davis, J.S.; Hurst, R.E.; Culkin, D.J.; Penning, T.M.; Lin, H.K. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan. BMC Cancer, 2010, 10(1), 672.
[http://dx.doi.org/10.1186/1471-2407-10-672] [PMID: 21134280]
[58]
Moradi Manesh, D.; El-Hoss, J.; Evans, K.; Richmond, J.; Toscan, C.E.; Bracken, L.S.; Hedrick, A.; Sutton, R.; Marshall, G.M.; Wilson, W.R.; Kurmasheva, R.T.; Billups, C.; Houghton, P.J.; Smith, M.A.; Carol, H.; Lock, R.B. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood, 2015, 126(10), 1193-1202.
[http://dx.doi.org/10.1182/blood-2014-12-618900] [PMID: 26116659]
[59]
Endo, S.; Oguri, H.; Segawa, J.; Kawai, M.; Hu, D.; Xia, S.; Okada, T.; Irie, K.; Fujii, S.; Gouda, H.; Iguchi, K.; Matsukawa, T.; Fujimoto, N.; Nakayama, T.; Toyooka, N.; Matsunaga, T.; Ikari, A. Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. J. Med. Chem., 2020, 63(18), 10396-10411.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00939] [PMID: 32847363]
[60]
Tavares, T.S.; Hofman, J.; Lekešová, A.; Želazková, J.; Wsól, V. Olaparib synergizes the anticancer activity of daunorubicin via interaction with AKR1C3. Cancers (Basel), 2020, 12(11), 3127.
[http://dx.doi.org/10.3390/cancers12113127] [PMID: 33114555]
[61]
Sekine, Y.; Togi, S.; Muromoto, R.; Kon, S.; Kitai, Y.; Yoshimura, A.; Oritani, K.; Matsuda, T. STAP-2 protein expression in B16F10 melanoma cells positively regulates protein levels of tyrosinase, which determines organs to infiltrate in the body. J. Biol. Chem., 2015, 290(28), 17462-17473.
[http://dx.doi.org/10.1074/jbc.M115.658575] [PMID: 26023234]
[62]
Leithner, K.; Wohlkoenig, C.; Stacher, E.; Lindenmann, J.; Hofmann, N.A.; Gallé, B.; Guelly, C.; Quehenberger, F.; Stiegler, P.; Smolle-Jüttner, F.M.; Philipsen, S.; Popper, H.H.; Hrzenjak, A.; Olschewski, A.; Olschewski, H. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model – role of tumor stroma cells. BMC Cancer, 2014, 14(1), 40.
[http://dx.doi.org/10.1186/1471-2407-14-40] [PMID: 24460801]
[63]
Mizerska-Kowalska, M.; Bojarska-Junak, A.; Jakubowicz-Gil, J.; Kandefer-Szerszeń, M. Neutral endopeptidase (NEP) is differentially involved in biological activities and cell signaling of colon cancer cell lines derived from various stages of tumor development. Tumour Biol., 2016, 37(10), 13355-13368.
[http://dx.doi.org/10.1007/s13277-016-5248-y] [PMID: 27460083]
[64]
Dai, J.; Shen, R.; Sumitomo, M.; Goldberg, J.S.; Geng, Y.; Navarro, D.; Xu, S.; Koutcher, J.A.; Garzotto, M.; Powell, C.T.; Nanus, D.M. Tumor-suppressive effects of neutral endopeptidase in androgen-independent prostate cancer cells. Clin. Cancer Res., 2001, 7(5), 1370-1377.
[PMID: 11350908]
[65]
Kouba, S.; Ouldamer, L.; Garcia, C.; Fontaine, D.; Chantome, A.; Vandier, C.; Goupille, C.; Potier-Cartereau, M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium, 2019, 81, 38-50.
[http://dx.doi.org/10.1016/j.ceca.2019.06.002] [PMID: 31200184]
[66]
Eltayeb, K.; La Monica, S.; Tiseo, M.; Alfieri, R.; Fumarola, C. Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-mutated non-small cell lung cancer. Cells, 2022, 11(3), 413.
[http://dx.doi.org/10.3390/cells11030413] [PMID: 35159223]
[67]
Padar, S.; Van Breemen, C.; Thomas, D.W.; Uchizono, J.A.; Livesey, J.C.; Rahimian, R. Differential regulation of calcium homeostasis in adenocarcinoma cell line A549 and its Taxol‐resistant subclone. Br. J. Pharmacol., 2004, 142(2), 305-316.
[http://dx.doi.org/10.1038/sj.bjp.0705755] [PMID: 15066902]
[68]
Liu, G-X.; Sheng, H-F.; Wu, S. A study on the levels of calmodulin and DNA in human lung cancer cells. Br. J. Cancer, 1996, 73(7), 899-901.
[http://dx.doi.org/10.1038/bjc.1996.160] [PMID: 8611403]