Combinatorial Chemistry & High Throughput Screening

Author(s): Yangyang Bai, Ruiting Chen, Jijian Sun and Yilin Guo*

DOI: 10.2174/1386207326666230731155309

Evaluation of Therapeutic Mechanism of Hedyotis Diffusa Willd (HDW)‒ Scutellaria Barbata (SB) in Clear Cell Renal Cell Carcinoma via Singlecell RNA Sequencing and Network Pharmacology

Page: [910 - 921] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Objective: The present study aimed to investigate the therapeutic mechanism of Hedyotis diffusa Willd (HDW) and Scutellaria barbata (SB) in ccRCC using a combination of single-cell RNA sequencing (scRNA-seq) and network pharmacology.

Methods: The active ingredients and potential molecular targets of HDW-SB were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Gene expression data (GSE53757) were obtained from the Gene Expression Omnibus database. The hub genes of HDW-SB against ccRCC were identified via the protein–protein interaction network, and further analyzed by molecular complex detection. The roles of these genes in the diagnosis and immune infiltration of ccRCC were analyzed. The clinical significance of hub genes was verified using scRNA-seq data (GSE121638) and molecular docking.

Results: Following the PPI network analysis, 29 hub genes of HDW-SB against ccRCC were identified. All hub genes, except for CENPE, had significantly different expressions in tumor tissue and a more accurate diagnosis of ccRCC. Fifteen cell clusters were defined based on the scRNA-seq dataset, and the clusters were annotated as six cell types using marker genes. TYMS and KIAA0101 from hub genes were highly expressed in NK cells. Three active compounds, quercetin, luteolin, and baicalein, were found to target TYMS and KIAA0101 from the compound-target interaction network.

Conclusion: 29 hub genes of HDW-SB against ccRCC were identified and showed good performance in terms of diagnosis and prognosis. Moreover, among these hub genes docking with the main ingredients of HDW-SB, TYMS and KIAA0101 exerted anti-ccRCC effects through NK cells.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2019, 30(5), 706-720.
[http://dx.doi.org/10.1093/annonc/mdz056] [PMID: 30788497]
[3]
Makhov, P.; Joshi, S.; Ghatalia, P.; Kutikov, A.; Uzzo, R.G.; Kolenko, V.M. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management strategies. Mol. Cancer Ther., 2018, 17(7), 1355-1364.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1299] [PMID: 29967214]
[4]
Tao, W.; Luo, X.; Cui, B.; Liang, D.; Wang, C.; Duan, Y.; Li, X.; Zhou, S.; Zhao, M.; Li, Y.; He, Y.; Wang, S.; Kelley, K.W.; Jiang, P.; Liu, Q. Practice of traditional Chinese medicine for psycho-behavioral intervention improves quality of life in cancer patients: A systematic review and meta-analysis. Oncotarget, 2015, 6(37), 39725-39739.
[http://dx.doi.org/10.18632/oncotarget.5388] [PMID: 26498685]
[5]
Lin, L.; Cheng, K.; Xie, Z.; Chen, C.; Chen, L.; Huang, Y.; Liang, Z. Purification and characterization a polysaccharide from Hedyotis diffusa and its apoptosis inducing activity toward human lung cancer cell line A549. Int. J. Biol. Macromol., 2019, 122, 64-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.077] [PMID: 30342944]
[6]
Kuo, Y.J.; Yang, J.S.; Lu, C.C.; Chiang, S.; Lin, J.G.; Chung, J.G. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray. Environ. Toxicol., 2015, 30(10), 1162-1177.
[http://dx.doi.org/10.1002/tox.21989] [PMID: 24677778]
[7]
Zhang, P.; Zhang, B.; Gu, J.; Hao, L.; Hu, F.; Han, C. The study of the effect of hedyotis diffusa on the proliferation and the apoptosis of the cervical tumor in nude mouse model. Cell Biochem. Biophys., 2015, 72(3), 783-789.
[http://dx.doi.org/10.1007/s12013-015-0532-9] [PMID: 25677988]
[8]
Su, X.; Li, Y.; Jiang, M.; Zhu, J.; Zheng, C.; Chen, X.; Zhou, J.; Li, Y.; Xiao, W.; Wang, Y. Systems pharmacology uncover the mechanism of anti-non-small cell lung cancer for Hedyotis diffusa Willd. Biomed. Pharmacother., 2019, 109, 969-984.
[http://dx.doi.org/10.1016/j.biopha.2018.10.162] [PMID: 30551551]
[9]
Sun, P.; Sun, D.; Wang, X. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 Cells. Carbohydr. Polym., 2017, 167, 90-96.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.022] [PMID: 28433181]
[10]
Lin, J.; Feng, J.; Yang, H.; Yan, Z.; Li, Q.; Wei, L.; Lai, Z.; Jin, Y.; Peng, J. Scutellaria barbata D. Don inhibits 5-fluorouracil resistance in colorectal cancer by regulating PI3K/AKT pathway. Oncol. Rep., 2017, 38(4), 2293-2300.
[http://dx.doi.org/10.3892/or.2017.5892] [PMID: 28849113]
[11]
Kan, X.; Zhang, W.; You, R.; Niu, Y.; Guo, J.; Xue, J. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complement. Altern. Med., 2017, 17(1), 41.
[http://dx.doi.org/10.1186/s12906-016-1551-9] [PMID: 28086772]
[12]
Xu, Y.; Chen, X.X.; Jiang, Y.X.; Zhang, D.D. Ethyl acetate fraction from hedyotis diffusa plus scutellaria barbata exerts anti-inflammatory effects by regulating miR-155 expression and JNK signaling pathway. Evid. Based Complement. Altern. Med., 2018, 2018, 3593408.
[http://dx.doi.org/10.1155/2018/3593408] [PMID: 29725352]
[13]
Xu, X.; Chen, F.; Zhang, L.; Liu, L.; Zhang, C.; Zhang, Z.; Li, W. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway. J. Ethnopharmacol., 2021, 279, 114343.
[http://dx.doi.org/10.1016/j.jep.2021.114343] [PMID: 34147618]
[14]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[15]
Liu, W.; Xu, W.; Li, C.; Xu, J.; Huang, K.; Hu, R.; Huang, H.; Liu, X. Network pharmacological systems study of Huang-Lian-Tang in the treatment of glioblastoma multiforme. Oncol. Lett., 2021, 21(1), 18.
[PMID: 33240424]
[16]
Wesołowski, W.; Szklarczyk, M.; Szalonek, M.; Słowińska, J. Analysis of the mitochondrial proteome in cytoplasmic male-sterile and male-fertile beets. J. Proteomics, 2015, 119, 61-74.
[http://dx.doi.org/10.1016/j.jprot.2014.12.013] [PMID: 25573812]
[17]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[18]
Liu, Y.; Lv, H.; Li, X.; Liu, J.; Chen, S.; Chen, Y.; Jin, Y.; An, R.; Yu, S.; Wang, Z. Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathway. Int. J. Biol. Sci., 2021, 17(13), 3522-3537.
[http://dx.doi.org/10.7150/ijbs.62114] [PMID: 34512163]
[19]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[20]
Liu, H.; Zeng, Z.; Wang, S.; Li, T.; Mastriani, E.; Li, Q.H.; Bao, H.X.; Zhou, Y.J.; Wang, X.; Liu, Y.; Liu, W.; Hu, S.; Gao, S.; Yu, M.; Qi, Y.; Shen, Z.; Wang, H.; Gao, T.; Dong, L.; Johnston, R.N.; Liu, S.L. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol. Ther., 2017, 18(12), 990-999.
[http://dx.doi.org/10.1080/15384047.2017.1394542] [PMID: 29173024]
[21]
Lv, Y.X.; Pan, H.R.; Song, X.Y.; Chang, Q.Q.; Zhang, D.D. Hedyotis diffusa plus scutellaria barbata suppress the growth of non-small-cell lung cancer via NLRP3/NF- κ B/MAPK signaling pathways. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/6666499] [PMID: 34239588]
[22]
Ma, T.T.; Zhang, G.L.; Dai, C.F.; Zhang, B.R.; Cao, K.X.; Wang, C.G.; Yang, G.W.; Wang, X.M. Scutellaria barbata and Hedyotis diffusa herb pair for breast cancer treatment: Potential mechanism based on network pharmacology. J. Ethnopharmacol., 2020, 259, 112929.
[http://dx.doi.org/10.1016/j.jep.2020.112929] [PMID: 32416245]
[23]
Xiao, G.F.; Yan, X.; Chen, Z.; Zhang, R.J.; Liu, T.Z.; Hu, W.L. Identification of a novel immune-related prognostic biomarker and small-molecule drugs in Clear Cell Renal Cell Carcinoma (ccRCC) by a merged microarray-acquired dataset and TCGA database. Front. Genet., 2020, 11, 810.
[http://dx.doi.org/10.3389/fgene.2020.00810] [PMID: 33014010]
[24]
Chen, J.; Li, Z.; Chen, A.; Ye, X.; Luo, H.; Rankin, G.; Chen, Y. Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int. J. Mol. Sci., 2013, 14(3), 6012-6025.
[http://dx.doi.org/10.3390/ijms14036012] [PMID: 23502466]
[25]
Liu, Z.; Sun, T.; Piao, C.; Zhang, Z.; Kong, C. METTL13 inhibits progression of clear cell renal cell carcinoma with repression on PI3K/AKT/mTOR/HIF-1α pathway and c-Myc expression. J. Transl. Med., 2021, 19(1), 209.
[http://dx.doi.org/10.1186/s12967-021-02879-2] [PMID: 33985542]
[26]
Mizumoto, A.; Yamamoto, K.; Nakayama, Y.; Takara, K.; Nakagawa, T.; Hirano, T.; Hirai, M. Induction of epithelial-mesenchymal transition via activation of epidermal growth factor receptor contributes to sunitinib resistance in human renal cell carcinoma cell lines. J. Pharmacol. Exp. Ther., 2015, 355(2), 152-158.
[http://dx.doi.org/10.1124/jpet.115.226639] [PMID: 26306766]
[27]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[28]
Han, S.; Lin, F.; Qi, Y.; Liu, C.; Zhou, L.; Xia, Y.; Chen, K.; Xing, J.; Liu, Z.; Yu, W.; Zhang, Y.; Zhou, X.; Rao, T.; Cheng, F. HO-1 contributes to luteolin-triggered ferroptosis in clear cell renal cell carcinoma via increasing the labile iron pool and promoting lipid peroxidation. Oxid. Med. Cell. Longev., 2022, 2022, 3846217.
[http://dx.doi.org/10.1155/2022/3846217] [PMID: 35656025]
[29]
Rahmani, A.H.; Almatroudi, A.; Khan, A.A.; Babiker, A.Y.; Alanezi, M.; Allemailem, K.S. The multifaceted role of baicalein in cancer management through modulation of cell signalling pathways. Molecules, 2022, 27(22), 8023.
[http://dx.doi.org/10.3390/molecules27228023] [PMID: 36432119]
[30]
Varghese, V.; Magnani, L.; Harada-Shoji, N.; Mauri, F.; Szydlo, R.M.; Yao, S.; Lam, E.W.F.; Kenny, L.M. FOXM1 modulates 5-FU resistance in colorectal cancer through regulating TYMS expression. Sci. Rep., 2019, 9(1), 1505.
[http://dx.doi.org/10.1038/s41598-018-38017-0] [PMID: 30728402]
[31]
Shichijo, S.; Azuma, K.; Komatsu, N.; Ito, M.; Maeda, Y.; Ishihara, Y.; Itoh, K. Two proliferation-related proteins, TYMS and PGK1, could be new cytotoxic T lymphocyte-directed tumor-associated antigens of HLA-A2+ colon cancer. Clin. Cancer Res., 2004, 10(17), 5828-5836.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0350] [PMID: 15355913]
[32]
Yuan, R.H.; Jeng, Y.M.; Pan, H.W.; Hu, F.C.; Lai, P.L.; Lee, P.H.; Hsu, H.C. Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin. Cancer Res., 2007, 13(18), 5368-5376.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1113] [PMID: 17875765]
[33]
Sun, T.; An, Q.; Yan, R.; Li, K.; Zhu, K.; Dang, C.; Yuan, D. MicroRNA 216a 5p suppresses esophageal squamous cell carcinoma progression by targeting KIAA0101. Oncol. Rep., 2020, 44(5), 1971-1984.
[http://dx.doi.org/10.3892/or.2020.7751] [PMID: 32901882]