Letters in Drug Design & Discovery

Author(s): Marilisa Pia Dimmito*, Lisa Marinelli, Ivana Cacciatore, Anna Lucia Valeri, Alessandra Rapino and Antonio Di Stefano

DOI: 10.2174/1570180820666230726164112

DownloadDownload PDF Flyer Cite As
Self-assembling Peptides (SAPs) as Powerful Tools for the Preparation of Antimicrobial and Wound-Healing Nanostructures

Page: [2232 - 2247] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Supramolecular self-assembly (SA) is a naturally occurring and free energy-driven process of molecules to produce nanostructured systems depending on the assembling environment. SA molecules have captivated the research attention since they possess singular physicochemical properties that are potentially useful to make the nanostructures quite suitable for biomedical applications, such as diagnostics, drug delivery, tissue engineering, and regenerative medicine. Due to their high biological activity and low toxicity, the self-assembly properties of peptides bid certain advantages as drugs and drug delivery platforms. Among the discovered self-assembling bioactive peptides (SAPs), antimicrobial peptides (AMPs) are widely distributed through plant and animal kingdoms and play a key role as an alternative strategy to fight infections bypassing conventional antimicrobial drugs, susceptible to antimicrobial resistance. Based on this evidence, in this review, we summarized the mechanism of the self-assembling of peptides, the main forces responsible for the SAPs formation, and the studies regarding their possible implication in infectious diseases as well as wound dressing materials.

Keywords: Self-assembling Peptides, SAPs, antimicrobial peptides, wound healing-promoting peptides, SAPs nanostructure, supramolecular self-assembly, peptide-based hydrogels.

Graphical Abstract

[1]
Grzybowski, B.A.; Wilmer, C.E.; Kim, J.; Browne, K.P.; Bishop, K.J.M. Self-assembly: From crystals to cells. Soft Matter, 2009, 5(6), 1110.
[http://dx.doi.org/10.1039/b819321p]
[2]
Fan, T.; Yu, X.; Shen, B.; Sun, L. Peptide self-assembled nanostructures for drug delivery applications. J. Nanomater., 2017, 2017, 4562474.
[http://dx.doi.org/10.1155/2017/4562474]
[3]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[4]
Pujals, S.; Fernández-Carneado, J.; López-Iglesias, C.; Kogan, M.J.; Giralt, E. Mechanistic aspects of CPP-mediated intracellular drug delivery: Relevance of CPP self-assembly. Biochim. Biophys. Acta Biomembr., 2006, 1758(3), 264-279.
[http://dx.doi.org/10.1016/j.bbamem.2006.01.006] [PMID: 16545772]
[5]
Li, I.C.; Moore, A.N.; Hartgerink, J.D. “Missing tooth” multidomain peptide nanofibers for delivery of small molecule drugs. Biomacromolecules, 2016, 17(6), 2087-2095.
[http://dx.doi.org/10.1021/acs.biomac.6b00309] [PMID: 27253735]
[6]
Verma, G.; Hassan, P.A. Self assembled materials: Design strategies and drug delivery perspectives. Phys. Chem. Chem. Phys., 2013, 15(40), 17016-17028.
[http://dx.doi.org/10.1039/c3cp51207j] [PMID: 23907560]
[7]
Fernandez-Lopez, S.; Kim, H.S.; Choi, E.C.; Delgado, M.; Granja, J.R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D.A.; Wilcoxen, K.M.; Ghadiri, M.R. Antibacterial agents based on the cyclic d,l-α-peptide architecture. Nature, 2001, 412(6845), 452-455.
[http://dx.doi.org/10.1038/35086601] [PMID: 11473322]
[8]
Kassam, H.A.; Gillis, D.C.; Dandurand, B.R.; Karver, M.R.; Tsihlis, N.D.; Stupp, S.I.; Kibbe, M.R. Development of fractalkine-targeted nanofibers that localize to sites of arterial injury. Nanomaterials, 2020, 10(3), 420.
[http://dx.doi.org/10.3390/nano10030420] [PMID: 32121105]
[9]
Gelain, F.; Luo, Z.; Zhang, S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev., 2020, 120(24), 13434-13460.
[http://dx.doi.org/10.1021/acs.chemrev.0c00690] [PMID: 33216525]
[10]
Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem., 2012, 4(12), 1527-1531.
[http://dx.doi.org/10.4155/fmc.12.94] [PMID: 22917241]
[11]
Simonetti, O.; Cirioni, O.; Cacciatore, I.; Baldassarre, L.; Orlando, F.; Pierpaoli, E.; Lucarini, G.; Orsetti, E.; Provinciali, M.; Fornasari, E.; Di Stefano, A.; Giacometti, A.; Offidani, A. Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of staphylococcal infected wound. PLoS One, 2016, 11(6), e0151956.
[http://dx.doi.org/10.1371/journal.pone.0151956] [PMID: 27253706]
[12]
Marinelli, L.; Ciulla, M.; Ritsema, J.A.S.; van Nostrum, C.F.; Cacciatore, I.; Dimmito, M.P.; Palmerio, F.; Orlando, G.; Robuffo, I.; Grande, R.; Puca, V.; Di Stefano, A. Preparation, characterization, and biological evaluation of a hydrophilic peptide loaded on PEG-PLGA nanoparticles. Pharmaceutics, 2022, 14(9), 1821.
[http://dx.doi.org/10.3390/pharmaceutics14091821] [PMID: 36145568]
[13]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[14]
La Manna, S.; Di Natale, C.; Onesto, V.; Marasco, D. Self-assembling peptides: From design to biomedical applications. Int. J. Mol. Sci., 2021, 22(23), 12662.
[http://dx.doi.org/10.3390/ijms222312662] [PMID: 34884467]
[15]
Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11(1), 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004] [PMID: 27103939]
[16]
Yang, J.; An, H.W.; Wang, H. Self-assembled peptide drug delivery systems. ACS Appl. Bio Mater., 2021, 4(1), 24-46.
[http://dx.doi.org/10.1021/acsabm.0c00707] [PMID: 35014275]
[17]
Chen, Y.; Liu, B.; Guo, L.; Xiong, Z.; We, G. Enzyme-instructed self-assembly of peptides: Process, dynamics, nanostructures, and biomedical applications. AIMS Biophys., 2020, 7(4), 411-428.
[http://dx.doi.org/10.3934/biophy.2020028]
[18]
Bahar, A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[19]
Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[20]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[21]
Lombardi, L.; Falanga, A.; Del Genio, V.; Galdiero, S. A new hope: Self-assembling peptides with antimicrobial activity. Pharmaceutics, 2019, 11(4), 166.
[http://dx.doi.org/10.3390/pharmaceutics11040166] [PMID: 30987353]
[22]
Malekkhaiat Häffner, S.; Malmsten, M. Influence of self-assembly on the performance of antimicrobial peptides. Curr. Opin. Colloid Interface Sci., 2018, 38, 56-79.
[http://dx.doi.org/10.1016/j.cocis.2018.09.002]
[23]
Bechinger, B.; Lohner, K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1529-1539.
[http://dx.doi.org/10.1016/j.bbamem.2006.07.001] [PMID: 16928357]
[24]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[25]
Negut, I.; Grumezescu, V.; Grumezescu, A. Treatment strategies for infected wounds. Molecules, 2018, 23(9), 2392.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[26]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[27]
Marinelli, L.; Cacciatore, I.; Costantini, E.; Dimmito, M.P.; Serra, F.; Di Stefano, A.; Reale, M. Wound-healing promotion and anti-inflammatory properties of carvacrol prodrugs/hyaluronic acid formulations. Pharmaceutics, 2022, 14(7), 1468.
[http://dx.doi.org/10.3390/pharmaceutics14071468] [PMID: 35890363]
[28]
Marinelli, L.; Cacciatore, I.; Eusepi, P.; Dimmito, M.P.; Di Rienzo, A.; Reale, M.; Costantini, E.; Borrego-Sánchez, A.; García-Villén, F.; Viseras, C.; Morroni, G.; Fioriti, S.; Brescini, L.; Di Stefano, A. In vitro wound-healing properties of water-soluble terpenoids loaded on halloysite clay. Pharmaceutics, 2021, 13(8), 1117.
[http://dx.doi.org/10.3390/pharmaceutics13081117] [PMID: 34452078]
[29]
Sun, L.; Zheng, C.; Webster, T. Self-assembled peptide nanomaterials for biomedical applications: Promises and pitfalls. Int. J. Nanomedicine, 2016, 12, 73-86.
[http://dx.doi.org/10.2147/IJN.S117501] [PMID: 28053525]
[30]
Du, Z.; Fan, B.; Dai, Q.; Wang, L.; Guo, J.; Ye, Z.; Cui, N.; Chen, J.; Tan, K.; Li, R.; Tang, W. Supramolecular peptide nanostructures: Self-assembly and biomedical applications. Giant, 2022, 9, 100082.
[http://dx.doi.org/10.1016/j.giant.2021.100082]
[31]
Yoshimatsu, M.; Nakamura, R.; Kishimoto, Y.; Yurie, H.; Hayashi, Y.; Kaba, S.; Ohnishi, H.; Yamashita, M.; Tateya, I.; Omori, K. Recurrent laryngeal nerve regeneration using a self‐assembling peptide hydrogel. Laryngoscope, 2020, 130(10), 2420-2427.
[http://dx.doi.org/10.1002/lary.28434] [PMID: 31804718]
[32]
Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol., 2020, 8, 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[33]
Lee, H.R.; Helquist, S.A.; Kool, E.T.; Johnson, K.A. Importance of hydrogen bonding for efficiency and specificity of the human mitochondrial DNA polymerase. J. Biol. Chem., 2008, 283(21), 14402-14410.
[http://dx.doi.org/10.1074/jbc.M705007200] [PMID: 17650502]
[34]
Genix, A.C.; Oberdisse, J. Nanoparticle self-assembly: From interactions in suspension to polymer nanocomposites. Soft Matter, 2018, 14(25), 5161-5179.
[http://dx.doi.org/10.1039/C8SM00430G] [PMID: 29893402]
[35]
Matsuurua, K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Advances, 2014, 4(6), 2942-2953.
[http://dx.doi.org/10.1039/C3RA45944F]
[36]
Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(6), 582-612.
[http://dx.doi.org/10.1002/wnan.1238] [PMID: 23929805]
[37]
Fleming, P.J.; Rose, G.D. Do all backbone polar groups in proteins form hydrogen bonds? Protein Sci., 2005, 14(7), 1911-1917.
[http://dx.doi.org/10.1110/ps.051454805] [PMID: 15937286]
[38]
Lehmkühler, F.; Forov, Y.; Elbers, M.; Steinke, I.; Sahle, C.J.; Weis, C.; Tsuji, N.; Itou, M.; Sakurai, Y.; Poulain, A.; Sternemann, C. Temperature dependence of the hydrogen bond network in trimethylamine N-oxide and guanidine hydrochloride–water solutions. Phys. Chem. Chem. Phys., 2017, 19(41), 28470-28475.
[http://dx.doi.org/10.1039/C7CP04958G] [PMID: 29039855]
[39]
Sung, S.S. Peptide folding driven by Van der Waals interactions. Protein Sci., 2015, 24(9), 1383-1388.
[http://dx.doi.org/10.1002/pro.2710] [PMID: 26013298]
[40]
Kumar, S.; Nussinov, R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys. J., 2002, 83(3), 1595-1612.
[http://dx.doi.org/10.1016/S0006-3495(02)73929-5] [PMID: 12202384]
[41]
Lampel, A.; Ulijn, R.V.; Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev., 2018, 47(10), 3737-3758.
[http://dx.doi.org/10.1039/C8CS00177D] [PMID: 29748676]
[42]
Li, Y.; Gao, G.H.; Lee, D.S. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv. Healthc. Mater., 2013, 2(3), 388-417.
[http://dx.doi.org/10.1002/adhm.201200313] [PMID: 23184586]
[43]
Chen, B.; He, X.Y.; Yi, X.Q.; Zhuo, R.X.; Cheng, S.X. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(28), 15148-15153.
[http://dx.doi.org/10.1021/acsami.5b03866] [PMID: 26168166]
[44]
Tao, K.; Wang, J.; Zhou, P.; Wang, C.; Xu, H.; Zhao, X.; Lu, J.R. Self-assembly of short aβ(16-22) peptides: Effect of terminal capping and the role of electrostatic interaction. Langmuir, 2011, 27(6), 2723-2730.
[http://dx.doi.org/10.1021/la1034273] [PMID: 21309606]
[45]
Dill, K.A. Dominant forces in protein folding. Biochemistry, 1990, 29(31), 7133-7155.
[http://dx.doi.org/10.1021/bi00483a001] [PMID: 2207096]
[46]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[47]
Adler-Abramovich, L.; Reches, M.; Sedman, V.L.; Allen, S.; Tendler, S.J.B.; Gazit, E. Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications. Langmuir, 2006, 22(3), 1313-1320.
[http://dx.doi.org/10.1021/la052409d] [PMID: 16430299]
[48]
Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-modified amino acids and short peptides: Simple bio-inspired building blocks for the fabrication of functional materials. Chem. Soc. Rev., 2016, 45(14), 3935-3953.
[http://dx.doi.org/10.1039/C5CS00889A] [PMID: 27115033]
[49]
Gazit, E. A possible role for π‐stacking in the self‐assembly of amyloid fibrils. FASEB J., 2002, 16(1), 77-83.
[http://dx.doi.org/10.1096/fj.01-0442hyp] [PMID: 11772939]
[50]
Chockalingam, K.; Blenner, M.; Banta, S. Design and application of stimulus-responsive peptide systems. Protein Eng. Des. Sel., 2007, 20(4), 155-161.
[http://dx.doi.org/10.1093/protein/gzm008] [PMID: 17376876]
[51]
Cerpa, R.; Cohen, F.E.; Kuntz, I.D. Conformational switching in designed peptides: The helix/sheet transition. Fold. Des., 1996, 1(2), 91-101.
[http://dx.doi.org/10.1016/S1359-0278(96)00018-1] [PMID: 9079369]
[52]
Khandogin, J.; Chen, J.; Brooks, C.L. III Exploring atomistic details of pH-dependent peptide folding. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18546-18550.
[http://dx.doi.org/10.1073/pnas.0605216103] [PMID: 17116871]
[53]
Carr, C.M.; Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell, 1993, 73(4), 823-832.
[http://dx.doi.org/10.1016/0092-8674(93)90260-W] [PMID: 8500173]
[54]
Aggeli, A.; Bell, M.; Carrick, L.M.; Fishwick, C.W.G.; Harding, R.; Mawer, P.J.; Radford, S.E.; Strong, A.E.; Boden, N. pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J. Am. Chem. Soc., 2003, 125(32), 9619-9628.
[http://dx.doi.org/10.1021/ja021047i] [PMID: 12904028]
[55]
Davies, R.P.W.; Aggeli, A.; Beevers, A.J.; Boden, N.; Carrick, L.M.; Fishwick, C.W.G.; Mcleish, T.C.B.; Nyrkova, I.; Semenov, A.N. Self-assembling β-sheet tape forming peptides. Supramol. Chem., 2006, 18(5), 435-443.
[http://dx.doi.org/10.1080/10610270600665855]
[56]
Schneider, J.P.; Pochan, D.J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc., 2002, 124(50), 15030-15037.
[http://dx.doi.org/10.1021/ja027993g] [PMID: 12475347]
[57]
Kretsinger, J.K.; Haines, L.A.; Ozbas, B.; Pochan, D.J.; Schneider, J.P. Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials, 2005, 26(25), 5177-5186.
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.029] [PMID: 15792545]
[58]
Do, T.D.; LaPointe, N.E.; Economou, N.J.; Buratto, S.K.; Feinstein, S.C.; Shea, J.E.; Bowers, M.T. Effects of pH and charge state on peptide assembly: The YVIFL model system. J. Phys. Chem. B, 2013, 117(37), 10759-10768.
[http://dx.doi.org/10.1021/jp406066d] [PMID: 23937333]
[59]
Altman, M.; Lee, P.; Rich, A.; Zhang, S. Conformational behavior of ionic self-complementary peptides. Protein Sci., 2000, 9(6), 1095-1105.
[http://dx.doi.org/10.1110/ps.9.6.1095] [PMID: 10892803]
[60]
Palladino, P.; Castelletto, V.; Dehsorkhi, A.; Stetsenko, D.; Hamley, I.W. Conformation and self-association of peptide amphiphiles based on the KTTKS collagen sequence. Langmuir, 2012, 28(33), 12209-12215.
[http://dx.doi.org/10.1021/la302123h] [PMID: 22834769]
[61]
Miravet, J.F.; Escuder, B.; Segarra-Maset, M.D.; Tena-Solsona, M.; Hamley, I.W.; Dehsorkhi, A.; Castelletto, V. Self-assembly of a peptide amphiphile: Transition from nanotape fibrils to micelles. Soft Matter, 2013, 9(13), 3558.
[http://dx.doi.org/10.1039/c3sm27899a]
[62]
Ozkan, A.D.; Tekinay, A.B.; Guler, M.O.; Tekin, E.D. Effects of temperature, pH and counterions on the stability of peptide amphiphile nanofiber structures. RSC Advances, 2016, 6(106), 104201-104214.
[http://dx.doi.org/10.1039/C6RA21261A]
[63]
Meijer, J.T.; Henckens, M.J.A.G.; Minten, I.J.; Löwik, D.W.P.M.; van Hest, J.C.M. Disassembling peptide-based fibres by switching the hydrophobic–hydrophilic balance. Soft Matter, 2007, 3(9), 1135-1137.
[http://dx.doi.org/10.1039/b708847g] [PMID: 32900034]
[64]
Muraoka, T.; Koh, C.Y.; Cui, H.; Stupp, S.I. Light-triggered bioactivity in three dimensions. Angew. Chem. Int. Ed., 2009, 48(32), 5946-5949.
[http://dx.doi.org/10.1002/anie.200901524] [PMID: 19582745]
[65]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[66]
Trent, A.; Ulery, B.D.; Black, M.J.; Barrett, J.C.; Liang, S.; Kostenko, Y.; David, N.A.; Tirrell, M.V. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J., 2015, 17(2), 380-388.
[http://dx.doi.org/10.1208/s12248-014-9707-3] [PMID: 25527256]
[67]
Stachurski, O.; Neubauer, D.; Małuch, I.; Wyrzykowski, D.; Bauer, M.; Bartoszewska, S.; Kamysz, W.; Sikorska, E. Effect of self-assembly on antimicrobial activity of double-chain short cationic lipopeptides. Bioorg. Med. Chem., 2019, 27(23), 115129.
[http://dx.doi.org/10.1016/j.bmc.2019.115129] [PMID: 31668583]
[68]
Makovitzki, A.; Baram, J.; Shai, Y. Antimicrobial lipopolypeptides composed of palmitoyl Di- and tricationic peptides: In vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry, 2008, 47(40), 10630-10636.
[http://dx.doi.org/10.1021/bi8011675] [PMID: 18783248]
[69]
Chou, S.; Guo, H.; Zingl, F.G.; Zhang, S.; Toska, J.; Xu, B.; Chen, Y.; Chen, P.; Waldor, M.K.; Zhao, W.; Mekalanos, J.J.; Mou, X. Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections. Proc. Natl. Acad. Sci. USA, 2023, 120(4), e2219679120.
[http://dx.doi.org/10.1073/pnas.2219679120] [PMID: 36649429]
[70]
Bradshaw, M.; Ho, D.; Fear, M.W.; Gelain, F.; Wood, F.M.; Iyer, K.S. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Sci. Rep., 2014, 4(1), 6903.
[http://dx.doi.org/10.1038/srep06903] [PMID: 25384420]
[71]
Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. J. Mater. Chem., 2007, 17(9), 850-854.
[http://dx.doi.org/10.1039/B611255B]
[72]
Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2003, 2(2), 114-122.
[http://dx.doi.org/10.1038/nrd1008] [PMID: 12563302]
[73]
Bai, J.; Chen, C.; Wang, J.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y.; Penny, J.; Waigh, T.; Lu, J.R.; Xu, H. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces, 2016, 8(24), 15093-15102.
[http://dx.doi.org/10.1021/acsami.6b03770] [PMID: 27243270]
[74]
Geisler, I.M.; Schneider, J.P. Evolution-based design of an injectable hydrogel. Adv. Funct. Mater., 2012, 22(3), 529-537.
[http://dx.doi.org/10.1002/adfm.201102330]
[75]
Salick, D.A.; Kretsinger, J.K.; Pochan, D.J.; Schneider, J.P. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc., 2007, 129(47), 14793-14799.
[http://dx.doi.org/10.1021/ja076300z] [PMID: 17985907]
[76]
Salick, D.A.; Pochan, D.J.; Schneider, J.P. Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus. Adv. Mater., 2009, 21(41), 4120-4123.
[http://dx.doi.org/10.1002/adma.200900189]
[77]
Laverty, G.; McCloskey, A.P.; Gilmore, B.F.; Jones, D.S.; Zhou, J.; Xu, B. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules, 2014, 15(9), 3429-3439.
[http://dx.doi.org/10.1021/bm500981y] [PMID: 25068387]
[78]
Ahmadi, Z.; Yadav, S.; Kar, A.K.; Jha, D.; Gautam, H.K.; Patnaik, S.; Kumar, P.; Sharma, A.K. An injectable self-assembling hydrogel based on RGD peptidomimetic β-sheets as multifunctional biomaterials. Biomaterials Advances, 2022, 133, 112633.
[http://dx.doi.org/10.1016/j.msec.2021.112633] [PMID: 35527136]
[79]
Carrejo, N.C.; Moore, A.N.; Lopez Silva, T.L.; Leach, D.G.; Li, I.C.; Walker, D.R.; Hartgerink, J.D. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater. Sci. Eng., 2018, 4(4), 1386-1396.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00031] [PMID: 29687080]
[80]
Lopez-Silva, T.L.; Leach, D.G.; Azares, A.; Li, I.C.; Woodside, D.G.; Hartgerink, J.D. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials, 2020, 231, 119667.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119667] [PMID: 31855625]
[81]
Moore, A.N.; Hartgerink, J.D. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc. Chem. Res., 2017, 50(4), 714-722.
[http://dx.doi.org/10.1021/acs.accounts.6b00553] [PMID: 28191928]
[82]
Jian, K.; Yang, C.; Li, T.; Wu, X.; Shen, J.; Wei, J.; Yang, Z.; Yuan, D.; Zhao, M.; Shi, J. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. J. Nanobiotechnology, 2022, 20(1), 201.
[http://dx.doi.org/10.1186/s12951-022-01390-0] [PMID: 35473604]
[83]
Cardoso, P.; Appiah Danso, S.; Hung, A.; Dekiwadia, C.; Pradhan, N.; Strachan, J.; McDonald, B.; Firipis, K.; White, J.F.; Aburto-Medina, A.; Conn, C.E.; Valéry, C. Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels. Front Chem., 2023, 10, 1009468.
[http://dx.doi.org/10.3389/fchem.2022.1009468] [PMID: 36712988]
[84]
Cheng, X. Nanostructures: Fabrication and applications; Nanolithography, 2014, pp. 348-375.
[85]
Xu, D.; Chen, W.; Tobin-Miyaji, Y.J.; Sturge, C.R.; Yang, S.; Elmore, B.; Singh, A.; Pybus, C.; Greenberg, D.E.; Sellati, T.J.; Qiang, W.; Dong, H. Fabrication and microscopic and spectroscopic characterization of cytocompatible self-assembling antimicrobial nanofibers. ACS Infect. Dis., 2018, 4(9), 1327-1335.
[http://dx.doi.org/10.1021/acsinfecdis.8b00069] [PMID: 29949345]
[86]
Porter, S.L.; Coulter, S.M.; Pentlavalli, S.; Thompson, T.P.; Laverty, G. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection. Acta Biomater., 2018, 77, 96-105.
[http://dx.doi.org/10.1016/j.actbio.2018.07.033] [PMID: 30031161]
[87]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x] [PMID: 29118336]
[88]
Shen, Z.; Guo, Z.; Zhou, L.; Wang, Y.; Zhang, J.; Hu, J.; Zhang, Y. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater. Sci., 2020, 8(7), 2031-2039.
[http://dx.doi.org/10.1039/C9BM01785B] [PMID: 32083626]
[89]
Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[90]
Chairatana, P.; Nolan, E.M. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J. Am. Chem. Soc., 2014, 136(38), 13267-13276.
[http://dx.doi.org/10.1021/ja5057906] [PMID: 25158166]
[91]
Chen, W.; Yang, S.; Li, S.; Lang, J.C.; Mao, C.; Kroll, P.; Tang, L.; Dong, H. Self-assembled peptide nanofibers display natural antimicrobial peptides to selectively kill bacteria without compromising cytocompatibility. ACS Appl. Mater. Interfaces, 2019, 11(32), 28681-28689.
[http://dx.doi.org/10.1021/acsami.9b09583] [PMID: 31328913]
[92]
Dehsorkhi, A.; Castelletto, V.; Hamley, I.W. Self‐assembling amphiphilic peptides. J. Pept. Sci., 2014, 20(7), 453-467.
[http://dx.doi.org/10.1002/psc.2633] [PMID: 24729276]
[93]
Cui, H.; Webber, M.J.; Stupp, S.I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers, 2010, 94(1), 1-18.
[http://dx.doi.org/10.1002/bip.21328] [PMID: 20091874]
[94]
Xie, Y.Y.; Qin, X.T.; Zhang, J.; Sun, M.Y.; Wang, F.P.; Huang, M.; Jia, S.R.; Qi, W.; Wang, Y.; Zhong, C. Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. J. Colloid Interface Sci., 2022, 622, 135-146.
[http://dx.doi.org/10.1016/j.jcis.2022.04.058] [PMID: 35490617]
[95]
Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5355-5360.
[http://dx.doi.org/10.1073/pnas.072089599] [PMID: 11929973]
[96]
Edwards-Gayle, C.J.C.; Barrett, G.; Roy, S.; Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Hamley, I.W. Selective antibacterial activity and lipid membrane interactions of arginine-rich amphiphilic peptides. ACS Appl. Bio Mater., 2020, 3(2), 1165-1175.
[http://dx.doi.org/10.1021/acsabm.9b00894] [PMID: 32296775]
[97]
Meng, H.; Chen, L.; Ye, Z.; Wang, S.; Zhao, X. The effect of a self‐assembling peptide nanofiber scaffold (peptide) when used as a wound dressing for the treatment of deep second degree burns in rats. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 89B(2), 379-391.
[http://dx.doi.org/10.1002/jbm.b.31226] [PMID: 18837444]
[98]
Chang, R.; Subramanian, K.; Wang, M.; Webster, T.J. Enhanced antibacterial properties of self-assembling peptide amphiphiles functionalized with heparin-binding cardin-motifs. ACS Appl. Mater. Interfaces, 2017, 9(27), 22350-22360.
[http://dx.doi.org/10.1021/acsami.7b07506] [PMID: 28628296]
[99]
Tan, P.; Tang, Q.; Xu, S.; Zhang, Y.; Fu, H.; Ma, X. Designing self‐assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections. Adv. Sci., 2022, 9(14), 2105955.
[http://dx.doi.org/10.1002/advs.202105955] [PMID: 35285170]
[100]
Liu, L.; Xu, K.; Wang, H.; Jeremy Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol., 2009, 4(7), 457-463.
[http://dx.doi.org/10.1038/nnano.2009.153] [PMID: 19581900]
[101]
Yang, C.H.; Chen, Y.C.; Peng, S.Y.; Tsai, A.P.Y.; Lee, T.J.F.; Yen, J.H.; Liou, J.W. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci. Rep., 2018, 8(1), 14602.
[102]
Silva, R.F.; Araújo, D.R.; Silva, E.R.; Ando, R.A.; Alves, W.A. L-diphenylalanine microtubes as a potential drug-delivery system: Characterization, release kinetics, and cytotoxicity. Langmuir, 2013, 29(32), 10205-10212.
[http://dx.doi.org/10.1021/la4019162] [PMID: 23879638]
[103]
Goel, R.; Garg, C.; Gautam, H.K.; Sharma, A.K.; Kumar, P.; Gupta, A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int. J. Biol. Macromol., 2018, 111, 880-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.079] [PMID: 29355630]
[104]
Bai, M.; Li, C.; Cui, H.; Lin, L. Preparation of self-assembling Litsea cubeba essential oil/diphenylalanine peptide micro/nanotubes with enhanced antibacterial properties against Staphylococcus aureus biofilm. Lebensm. Wiss. Technol., 2021, 146, 111394.
[http://dx.doi.org/10.1016/j.lwt.2021.111394]
[105]
Payne, J.A.E.; Kulkarni, K.; Izore, T.; Fulcher, A.J.; Peleg, A.Y.; Aguilar, M.I.; Cryle, M.J.; Del Borgo, M.P. Staphylococcus aureus entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. Nanoscale Adv., 2021, 3(9), 2607-2616.
[http://dx.doi.org/10.1039/D0NA01018A] [PMID: 36134162]
[106]
D’Souza, A.; Yoon, J.H.; Beaman, H.; Gosavi, P.; Lengyel-Zhand, Z.; Sternisha, A.; Centola, G.; Marshall, L.R.; Wehrman, M.D.; Schultz, K.M.; Monroe, M.B.; Makhlynets, O.V. Nine-residue peptide self-assembles in the presence of silver to produce a self-healing, cytocompatible, antimicrobial hydrogel. ACS Appl. Mater. Interfaces, 2020, 12(14), 17091-17099.
[http://dx.doi.org/10.1021/acsami.0c01154] [PMID: 32154701]
[107]
Lai, Z.; Jian, Q.; Li, G.; Shao, C.; Zhu, Y.; Yuan, X.; Chen, H.; Shan, A. Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano, 2021, 15(10), 15824-15840.
[http://dx.doi.org/10.1021/acsnano.1c03301] [PMID: 34549935]
[108]
Marchesan, S.; Qu, Y.; Waddington, L.J.; Easton, C.D.; Glattauer, V.; Lithgow, T.J.; McLean, K.M.; Forsythe, J.S.; Hartley, P.G. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials, 2013, 34(14), 3678-3687.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.096] [PMID: 23422591]
[109]
Chen, H.; Cheng, J.; Cai, X.; Han, J.; Chen, X.; You, L.; Xiong, C.; Wang, S. pH-Switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing. ACS Appl. Mater. Interfaces, 2022, 14(16), 18120-18132.
[http://dx.doi.org/10.1021/acsami.2c00580] [PMID: 35394280]
[110]
Phambu, N.; Almarwani, B.; Garcia, A.M.; Hamza, N.S.; Muhsen, A.; Baidoo, J.E.; Sunda-Meya, A. Chain length effect on the structure and stability of antimicrobial peptides of the (RW)n series. Biophys. Chem., 2017, 227, 8-13.
[http://dx.doi.org/10.1016/j.bpc.2017.05.009] [PMID: 28578996]
[111]
Syryamina, V.N.; Sannikova, N.E.; De Zotti, M.; Gobbo, M.; Formaggio, F.; Dzuba, S.A. Tylopeptin B peptide antibiotic in lipid membranes at low concentrations: Self-assembling, mutual repulsion and localization. Biochim. Biophys. Acta Biomembr., 2021, 1863(9), 183585.
[http://dx.doi.org/10.1016/j.bbamem.2021.183585] [PMID: 33640429]
[112]
Zhang, X.Y.; Liu, C.; Fan, P.S.; Zhang, X.H.; Hou, D.Y.; Wang, J.Q.; Yang, H.; Wang, H.; Qiao, Z.Y. Skin-like wound dressings with on-demand administration based on in situ peptide self-assembly for skin regeneration. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(19), 3624-3636.
[http://dx.doi.org/10.1039/D2TB00348A] [PMID: 35420616]