Antimicrobial Activity of Halogen- and Chalcogen-Functionalized Thiazoloquinazolines

Page: [2490 - 2496] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

The investigation is devoted to the assessment of the potential antimicrobial use of new chalcogen- functionalized thiazolo[2,3-b]quinazolin-5-ones, halides and trihalides of thiazolo[3,2- a]quinazolin-10-ium and tribromides thiazino[3,2-a]quinazolin-11-ium. The compounds under study were obtained by electrophilic intramolecular heterocyclization. A high bactericidal and fungicidal effect against some gram-positive and gram-negative bacteria and fungi has been revealed for the investigated compounds. The "structure-activity" relationship has been established; the influence of the chalcogen's nature and the type of substituents in the thiazoline and pyrimidine cycles on the biological activity of the investigated thiazolo- and thiazinoquinazolines is shown. Angular 4-methyl-5-oxo-1- ((trihalogenotellanyl)methylidene)-8-(trifluoromethyl)-1,2,4,5-tetrahydrothiazolo[3,2-a]quinazolin-10- ium halides have been found to show the highest bactericidal activity to the gram-negative culture of Escherichia coli.

[1]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[2]
Keshari, A.K.; Singh, A.K.; Raj, V.; Rai, A.; Trivedi, P.; Ghosh, B.; Kumar, U.; Rawat, A.; Kumar, D.; Saha, S. p-TSA-promoted syntheses of 5H-benzo[h]thiazolo[2,3-b]quinazoline and indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogs: Molecular modeling and in vitro antitumor activity against hepatocellular carcinoma. Drug Des. Devel. Ther., 2017, 11, 1623-1642. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459977/
[http://dx.doi.org/10.2147/DDDT.S136692] [PMID: 28615927]
[3]
Hassan, G.S. Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs. Med. Chem. Res., 2014, 23(1), 388-401.
[http://dx.doi.org/10.1007/s00044-013-0649-6]
[4]
Mir, S.A.; Dash, G.C.; Meher, R.K.; Mohanta, P.P.; Chopdar, K.S.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. In silico and in vitro evaluations of fluorophoric thiazolo-[2,3-b]quinazolinones as anti-cancer agents targeting EGFR-TKD. Appl. Biochem. Biotechnol., 2022, 194(10), 4292-4318.
[http://dx.doi.org/10.1007/s12010-022-03893-w] [PMID: 35366187]
[5]
Sangshetti, J.N.; Lokwani, D.K.; Chouthe, R.S.; Ganure, A.; Raval, B.; Khan, F.A.K.; Shinde, D.B. Green synthesis and biological evaluation of some new benzothiazolo[2,3-b]quinazolin-1-ones as anticancer agents. Med. Chem. Res., 2014, 23(11), 4893-4900.
[http://dx.doi.org/10.1007/s00044-014-1044-7]
[6]
Safakish, M.; Hajimahdi, Z.; Aghasadeghi, M.R.; Vahabpour, R.; Zarghi, A. Design, synthesis, molecular modeling and Anti-HIV assay of novel quinazolinone incorporated coumarin derivatives. Curr. HIV Res., 2020, 18(1), 41-51.
[http://dx.doi.org/10.2174/18734251MTAykODcuw] [PMID: 31820700]
[7]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.R.; Zarghi, A. Design, synthesis, docking studies and biological activities novel 2,3- diaryl-4-quinazolinone derivatives as anti-HIV-1 agents. Curr. HIV Res., 2019, 17(3), 214-222.
[http://dx.doi.org/10.2174/1570162X17666190911125359] [PMID: 31518225]
[8]
Li, Z.; Zhao, L.; Bian, Y.; Li, Y.; Qu, J.; Song, F. The antibacterial activity of quinazoline and quinazolinone hybrids. Curr. Top. Med. Chem., 2022, 22(12), 1035-1044.
[http://dx.doi.org/10.2174/1568026622666220307144015] [PMID: 35255796]
[9]
Jiang, Z.; Hong, W.D.; Cui, X.; Gao, H.; Wu, P.; Chen, Y.; Shen, D.; Yang, Y.; Zhang, B.; Taylor, M.J.; Ward, S.A.; O’Neill, P.M.; Zhao, S.; Zhang, K. Synthesis and structure–activity relationship of N4 -benzylamine-N 2 -isopropyl-quinazoline-2,4-diamines derivatives as potential antibacterial agents. RSC Advances, 2017, 7(82), 52227-52237.
[http://dx.doi.org/10.1039/C7RA10352B]
[10]
Kazemi, S.S.; Keivanloo, A.; Nasr-Isfahani, H.; Bamoniri, A. Synthesis of novel 1,5-disubstituted pyrrolo[1,2-a]quinazolines and their evaluation for anti-bacterial and anti-oxidant activities. RSC Advances, 2016, 6(95), 92663-92669.
[http://dx.doi.org/10.1039/C6RA21219K]
[11]
Antypenko, L.; Kovalenko, S.; Karpenko, O.; Katsev, A.; Novikov, V.; Fedyunina, N. 1-R-2-([1,2,4]Triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s: Synthesis, bioluminescence inhibition, molecular docking studies, antibacterial and antifungal activities. Curr. Computeraided Drug Des., 2016, 12(1), 29-41.
[http://dx.doi.org/10.2174/1573409912666160126142236] [PMID: 27012316]
[12]
Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg. Med. Chem., 2014, 22(13), 3405-3413.
[http://dx.doi.org/10.1016/j.bmc.2014.04.042] [PMID: 24856180]
[13]
Qin, T.H.; Liu, J.C.; Zhang, J.Y.; Tang, L.X.; Ma, Y.N.; Yang, R. Synthesis and biological evaluation of new 2-substituted-4-amino-quinolines and -quinazoline as potential antifungal agents. Bioorg. Med. Chem. Lett., 2022, 72, 128877.
[http://dx.doi.org/10.1016/j.bmcl.2022.128877] [PMID: 35788035]
[14]
Decker, M.; Kraus, B.; Heilmann, J. Design, synthesis and pharmacological evaluation of hybrid molecules out of quinazolinimines and lipoic acid lead to highly potent and selective butyrylcholinesterase inhibitors with antioxidant properties. Bioorg. Med. Chem., 2008, 16(8), 4252-4261.
[http://dx.doi.org/10.1016/j.bmc.2008.02.083] [PMID: 18343673]
[15]
Dash, B.; Dash, S.; Laloo, D.; Medhi, C. Design, synthesis and preliminary pharmacological screening (antimicrobial, analgesic and anti-inflammatory activity) of somenovel quinazoline derivatives. J. Appl. Pharm. Sci., 2017, 7(6), 83-96. https://japsonline.com/admin/php/uploads/2297_pdf.pdf
[16]
Jain, N.; Jain, H.; Jain, A.; Ravichandran, V.; Jain, P. Design, synthesis and evaluation of anti-inflammatory, analgesic and antibacterial activity of 2, 4, 6-trisubstituted quinazoline derivatives. An. Univ. Ovidius Constanta Ser. Chim., 2018, 29(2), 97-102.
[http://dx.doi.org/10.2478/auoc-2018-0014]
[17]
Selvam, T.P.; Kumar, P.V. Synthesis of Novel 6,7,8,9-Tetrahydro-5H-5-hydroxyphenyl-2-benzylidine-3-substituted Hydrazino Thiazolo (2,3-b) Quinazoline as Potent Antinociceptive and Anti-inflammatory Agents. Bull. Korean Chem. Soc., 2010, 31(11), 3265-3271.
[http://dx.doi.org/10.5012/bkcs.2010.31.11.3265]
[18]
Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E.H.; A Maklad, Y.; N Attia, H.; Al-Salahi, R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules, 2017, 22(7), 1094.
[http://dx.doi.org/10.3390/molecules22071094] [PMID: 28665338]
[19]
Voskoboynik, O.Y.; Kolomoets, O.S.; Palchikov, V.A.; Kovalenko, S.I.; Belenichev, I.F.; Shishkina, S.V. [1,2,4]Triazino[2,3-с]quinazolines 2*. Synthesis, structure, and anticonvulsant activity of new 3′-R1-spiro[(aza/oxa/thia)cycloalkyl-1(3, 4),6′-[1,2,4]triazino[2,3-c]quinazolin]-2′(7′H)-ones. Chem. Heterocycl. Compd., 2017, 53(10), 1134-1147.
[http://dx.doi.org/10.1007/s10593-017-2184-8]
[20]
Zayed, M.; Ihmaid, S.; Ahmed, H.; El-Adl, K.; Asiri, A.; Omar, A. Synthesis, modelling, and anticonvulsant studies of new quinazolines showing three highly active compounds with low toxicity and high affinity to the GABA-A receptor. Molecules, 2017, 22(2), 188.
[http://dx.doi.org/10.3390/molecules22020188] [PMID: 28125041]
[21]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[22]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; de Andrade, A.M.; Camilo, A., Jr; Pontes Ribeiro, R.A.; de Lazaro, S.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur. J. Med. Chem., 2016, 123, 508-513.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.062] [PMID: 27494167]
[23]
Farghaly, T.A.; Abdallah, M.A.; Khedr, M.A.; Mahmoud, H.K. Synthesis, antimicrobial activity and molecular docking study of thiazole derivatives. J. Heterocycl. Chem., 2017, 54(4), 2417-2425.
[http://dx.doi.org/10.1002/jhet.2838]
[24]
Lino, C.I.; Gonçalves de Souza, I.; Borelli, B.M.; Silvério Matos, T.T.; Santos Teixeira, I.N.; Ramos, J.P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; de Oliveira, R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem., 2018, 151, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[25]
Ouf, S.A.; Gomha, S.M.; Ewies, M.M.; Sharawy, I.A.A. Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles. J. Heterocycl. Chem., 2018, 55(1), 258-264.
[http://dx.doi.org/10.1002/jhet.3040]
[26]
Khamees, H.A.; Mohammed, Y.H.E.; S, A.; Al-Ostoot, F.H.; y, S.; Alghamdi, S.; Khanum, S.A.; Madegowda, M. Effect of o-difluoro and p-methyl substituents on the structure, optical properties and anti-inflammatory activity of phenoxy thiazole acetamide derivatives: Theoretical and experimental studies. J. Mol. Struct., 2020, 1199, 127024.
[http://dx.doi.org/10.1016/j.molstruc.2019.127024]
[27]
Wang, S.M.; Zha, G.F.; Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Mallesha, N.; Qin, H.L. Synthesis of benzo[d]thiazole-hydrazone analogues: Molecular docking and SAR studies of potential H +/K + ATPase inhibitors and anti-inflammatory agents. MedChemComm, 2017, 8(6), 1173-1189.
[http://dx.doi.org/10.1039/C7MD00111H] [PMID: 30108827]
[28]
Abhale, Y.K.; Shinde, A.; Deshmukh, K.K.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Synthesis, antitubercular and antimicrobial potential of some new thiazole substituted thiosemicarbazide derivatives. Med. Chem. Res., 2017, 26(10), 2557-2567.
[http://dx.doi.org/10.1007/s00044-017-1955-1]
[29]
Othman, D.I.A.; Hamdi, A.; Abdel-Aziz, M.M.; Elfeky, S.M. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis. Bioorg. Chem., 2022, 124, 105809.
[http://dx.doi.org/10.1016/j.bioorg.2022.105809] [PMID: 35447406]
[30]
Borcea, A.M.; Ionuț, I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624.
[http://dx.doi.org/10.3390/molecules26030624] [PMID: 33504100]
[31]
He, H.; Wang, X.; Shi, L.; Yin, W.; Yang, Z.; He, H.; Liang, Y. Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide–hydrazone and carboxamide moiety. Bioorg. Med. Chem. Lett., 2016, 26(14), 3263-3270.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.059] [PMID: 27262600]
[32]
Khan, M.H.; Hameed, S.; Akhtar, T.; Al-Masoudi, N.A.; Al-Masoudi, W.A.; Jones, P.G.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new oxadiazole and thiazole analogs. Med. Chem. Res., 2016, 25(10), 2399-2409.
[http://dx.doi.org/10.1007/s00044-016-1669-9]
[33]
Rauf, A.; Kashif, M.K.; Saeed, B.A.; Al-Masoudi, N.A.; Hameed, S. Synthesis, anti-HIV activity, molecular modeling study and QSAR of new designed 2-(2-arylidenehydrazinyl)-4-arylthiazoles. J. Mol. Struct., 2019, 1198, 126866.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.113]
[34]
Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact., 2018, 286, 119-131.
[http://dx.doi.org/10.1016/j.cbi.2018.03.013] [PMID: 29574026]
[35]
Mic, M.; Pîrnău, A.; Floare, C.G.; Marc, G.; Franchini, A.H.; Oniga, O.; Vlase, L.; Bogdan, M. Synthesis and molecular interaction study of a diphenolic hidrazinyl-thiazole compound with strong antioxidant and antiradical activity with HSA. J. Mol. Struct., 2021, 1244, 131278.
[http://dx.doi.org/10.1016/j.molstruc.2021.131278]
[36]
Kut, M.M.; Onysko, M.Y. Synthesis of functionalized azolo(azino)quinazolines by electrophilic cyclization (microreview). Chem. Heterocycl. Compd., 2021, 57(5), 528-530.
[http://dx.doi.org/10.1007/s10593-021-02937-z]
[37]
Kut, M.; Onysko, M.; Lendel, V. The influence of condensed cycle on regiochemistry of electrophilic heterocyclization of 3-alkenyl-2-thioxopyrimidin-4-one by p -alkoxyphenyltellurium trichloride. J. Heterocycl. Chem., 2018, 55(4), 888-892.
[http://dx.doi.org/10.1002/jhet.3114]
[38]
Kut, D.Z.; Kut, M.M.; Onysko, M.Y.; Lendel, V.G. Electrophilic cyclization of propargyl thioethers of 3-methyl(phenyl)-2-(prop-2-yn-1-ylthio)-7-(trifluoromethyl)quinazolin-4(3H)-ones by tellurium tetrahalides. Voprosy Khimii i Khimicheskoi Tekhnologii, 2021, 6(6), 40-44.
[http://dx.doi.org/10.32434/0321-4095-2021-139-6-40-44]
[39]
Kut, D.; Kut, M.; Svalyavin, O.; Onysko, M.; Lendel, V. Halogenoheterocyclization of terminal and internal 2-allylthio-3-methyl(phenyl)-7-trifluoromethylquinazolin-4-ones. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(12), 1255-1262.
[http://dx.doi.org/10.1080/10426507.2022.2085275]
[40]
Garkavenko, T.O.; Gorbatyuk, O.I.; Kozytska, T.G.; Andriyashchuk, V.O.; Garkavenko, V.M.; Dybkova, S.M.; Azirkin, I.B. Methodical recommendations for determining the sensitivity of microorganisms to antimicrobial drugs: Methodical recommendations; State Research Institute for Laboratory Diagnostics and Veterinary Sanitary Examination: Kyiv, 2021.
[41]
Rayenko, G.F.; Avksentiev, O.S.; Saberov, V.Sh.; Ryabitsky, A.B.; Yenya, V.I.; Komarovska-Porokhnyavets, O.Z.; Lubenets, V.I.; Korotkikh, N.I. Synthesis and the antimicrobial activity of salt carbenoid compounds. Adv. Res., 2022, 20(2)
[http://dx.doi.org/10.24959/ophcj.22.258880]
[42]
Kut, D.; Kut, М.М.; Onysko, M.; Balog, I.; Lendel, V. Chalcogenation of N-alkenyl derivatives of 2-thioxo-2,3-dihydro quinazoline-4(1H)-one. Sci. Bull. Uzhhorod Univ, 2021, 45(1), 90-94.
[http://dx.doi.org/10.24144/2414-0260.2021.1.90-94]