Combinatorial Chemistry & High Throughput Screening

Author(s): Stefaniya Velichkova, Kenn Foubert*, Mart Theunis and Luc Pieters

DOI: 10.2174/1386207326666230706120451

HILIC UPLC/ QTof MS Method Development for the Quantification of AGEs Inhibitors - Trouble Shooting Protocol

Page: [584 - 598] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Objective: The paper reports an attempt to develop and validate a HILIC UPLC/ QTof MS method for quantifying N-ε-carboxymethyl-L-lysine (CML) in vitro, testing N-ε- carboxy[D2]methyl-L-lysine (d2-CML), and N-ε-carboxy[4,4,5,5-D4]methyl-L-lysine (d4-CML) as internal standards.

Methods: During the method development, several challenging questions occurred that hindered the successful completion of the method. The study emphasizes the impact of issues, generally overlooked in the development of similar analytical protocols. For instance, the use of glassware and plasticware was critical for the accurate quantification of CML. Moreover, the origin of atypical variation in the response of the deuterated internal standards, though widely used in other experimental procedures, was investigated.

Result: A narrative description of the systematic approach used to address the various drawbacks during the analytical method development and validation is presented.

Conclusion: Reporting those findings can be considered beneficial while bringing an insightful notion about critical factors and potential interferences. Therefore, some conclusion and ideas can be drawn from these trouble-shooting questions, which might help other researchers to develop more reliable bioanalytical methods, or to raise their awareness of stumbling blocks along the way.

Graphical Abstract

[1]
Stitt, A.W. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br. J. Ophthalmol., 2001, 85(6), 746-753.
[http://dx.doi.org/10.1136/bjo.85.6.746] [PMID: 11371498]
[2]
Nedić, O.; Rattan, S.I.S.; Grune, T.; Trougakos, I.P. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic. Res., 2013, 47(sup1)(Suppl. 1), 28-38.
[http://dx.doi.org/10.3109/10715762.2013.806798] [PMID: 23692178]
[3]
Iannuzzi, C.; Irace, G.; Sirangelo, I.; Williams, T. Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci., 2014, 1, 9.
[http://dx.doi.org/10.3389/fmolb.2014.00009] [PMID: 25988150]
[4]
Rabbani, N.; Thornalley, P.J. Glycation research in amino acids: a place to call home. Amino Acids, 2012, 42(4), 1087-1096.
[http://dx.doi.org/10.1007/s00726-010-0782-1] [PMID: 20981459]
[5]
Yoshihara, K.; Nakamura, K.; Kanai, M.; Nagayama, Y.; Takahashi, S.; Saito, N.; Nagata, M. Determination of urinary and serum pentosidine and its application to elder patients. Biol. Pharm. Bull., 1998, 21(10), 1005-1008.
[http://dx.doi.org/10.1248/bpb.21.1005] [PMID: 9821800]
[6]
Wilker, S.C.; Chellan, P.; Arnold, B.M.; Nagaraj, R.H. Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine. Anal. Biochem., 2001, 290(2), 353-358.
[http://dx.doi.org/10.1006/abio.2001.4992] [PMID: 11237339]
[7]
Soboleva, A.; Vikhnina, M.; Grishina, T.; Frolov, A. Probing protein glycation by chromatography and mass spectrometry: analysis of glycation adducts. Int. J. Mol. Sci., 2017, 18(12), 2557-2589.
[http://dx.doi.org/10.3390/ijms18122557] [PMID: 29182540]
[8]
Ames, J.M. Determination of N ε-(carboxymethyl)lysine in foods and related systems. Ann. N. Y. Acad. Sci., 2008, 1126(1), 20-24.
[http://dx.doi.org/10.1196/annals.1433.030] [PMID: 18448791]
[9]
Assar, S.H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J.M. Determination of N ɛ-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids, 2009, 36(2), 317-326.
[http://dx.doi.org/10.1007/s00726-008-0071-4] [PMID: 18389168]
[10]
Ahmed, N.; Argirov, O.K.; Minhas, H.S.; Cordeiro, C.A.A.; Thornalley, P.J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nϵ-carboxymethyl-lysine- and Nϵ-(1-carboxyethyl)lysinemodified albumin. Biochem. J., 2002, 364(1), 1-14.
[http://dx.doi.org/10.1042/bj3640001] [PMID: 11988070]
[11]
Hanssen, N.M.J.; Engelen, L.; Ferreira, I.; Scheijen, J.L.J.M.; Huijberts, M.S.; van Greevenbroek, M.M.J.; van der Kallen, C.J.H.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.A.; Schalkwijk, C.G. Plasma levels of advanced glycation endproducts Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: the Hoorn and CODAM studies. J. Clin. Endocrinol. Metab., 2013, 98(8), E1369-E1373.
[http://dx.doi.org/10.1210/jc.2013-1068] [PMID: 23780372]
[12]
Nguyen, H.T. van der Fels-Klerx, H.J.; van Boekel, M.A.J.S. Nϵ -(carboxymethyl)lysine: A Review on Analytical Methods, Formation, and Occurrence in Processed Food, and Health Impact. Food Rev. Int., 2014, 30(1), 36-52.
[http://dx.doi.org/10.1080/87559129.2013.853774]
[13]
Nomi, Y.; Annaka, H.; Sato, S.; Ueta, E.; Ohkura, T.; Yamamoto, K.; Homma, S.; Suzuki, E.; Otsuka, Y. Simultaneous Quantitation of Advanced Glycation End Products in Soy Sauce and Beer by Liquid Chromatography-Tandem Mass Spectrometry without Ion-Pair Reagents and Derivatization. J. Agric. Food Chem., 2016, 64(44), 8397-8405.
[http://dx.doi.org/10.1021/acs.jafc.6b02500] [PMID: 27771957]
[14]
Thornalley, P.J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J., 2003, 375(3), 581-592.
[http://dx.doi.org/10.1042/bj20030763] [PMID: 12885296]
[15]
Delgado-Andrade, C.; Seiquer, I.; Navarro, M.P.; Morales, F.J. Maillard reaction indicators in diets usually consumed by adolescent population. Mol. Nutr. Food Res., 2007, 51(3), 341-351.
[http://dx.doi.org/10.1002/mnfr.200600070] [PMID: 17309116]
[16]
Ahmed, N.; Thornalley, P.J. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem. J., 2002, 364(1), 15-24.
[http://dx.doi.org/10.1042/bj3640015] [PMID: 11988071]
[17]
Koito, W.; Araki, T.; Horiuchi, S.; Nagai, R. Conventional antibody against Nepsilon-(carboxymethyl)lysine (CML) shows cross-reaction to Nepsilon-(carboxyethyl)lysine (CEL): immunochemical quantification of CML with a specific antibody. J. Biochem., 2004, 136(6), 831-837.
[http://dx.doi.org/10.1093/jb/mvh193] [PMID: 15671494]
[18]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[19]
Hwang, J.S.; Shin, C.H.; Yang, S.W. Clinical implications of Nepsilon-(carboxymethyl)lysine, advanced glycation end product, in children and adolescents with type 1 diabetes. Diabetes Obes. Metab., 2005, 7(3), 263-267.
[http://dx.doi.org/10.1111/j.1463-1326.2004.00398.x] [PMID: 15811143]
[20]
Kaufmann, E.; Boehm, B.O.; Süssmuth, S.D.; Kientsch-Engel, R.; Sperfeld, A.; Ludolph, A.C.; Tumani, H. The advanced glycation end-product Nɛ-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett., 2004, 371(2-3), 226-229.
[http://dx.doi.org/10.1016/j.neulet.2004.08.071] [PMID: 15519762]
[21]
Nerlich, A. Schleicher, E.D. Nɛ-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Atherosclerosis, 1999, 144(1), 41-47.
[http://dx.doi.org/10.1016/S0021-9150(99)00038-6] [PMID: 10381276]
[22]
Li, H.; Nakamura, S.; Miyazaki, S.; Morita, T.; Suzuki, M.; Pischetsrieder, M.; Niwa, T. N2-carboxyethyl-2′-deoxyguanosine, a DNA glycation marker, in kidneys and aortas of diabetic and uremic patients. Kidney Int., 2006, 69(2), 388-392.
[http://dx.doi.org/10.1038/sj.ki.5000064] [PMID: 16408131]
[23]
Rabbani, N.; Thornalley, P.J. Hidden complexities in the measurement of fructosyl-lysine and advanced glycation end products for risk prediction of vascular complications of diabetes. Diabetes, 2015, 64(1), 9-11.
[http://dx.doi.org/10.2337/db14-1516] [PMID: 25538281]
[24]
Ahmed, N.; Thornalley, P.J. Assay of early and advanced glycation adducts by enzymatic hydrolysis of proteins and HPLC of 6-aminoquinolylcarbonyl adducts. Int. Congr. Ser., 2002, 1245, 279-283.
[http://dx.doi.org/10.1016/S0531-5131(02)00895-6]
[25]
Delatour, T.; Hegele, J.; Parisod, V.; Richoz, J.; Maurer, S.; Steven, M.; Buetler, T. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography–electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. J. Chromatogr. A, 2009, 1216(12), 2371-2381.
[http://dx.doi.org/10.1016/j.chroma.2009.01.011] [PMID: 19181321]
[26]
Chang, J.C.; Ulrich, P.C.; Bucala, R.; Cerami, A. Detection of an advanced glycosylation product bound to protein in situ. J. Biol. Chem., 1985, 260(13), 7970-7974.
[http://dx.doi.org/10.1016/S0021-9258(17)39548-0] [PMID: 4008486]
[27]
Ouyang, Z.; Furlong, M.T.; Wu, S.; Sleczka, B.; Tamura, J.; Wang, H.; Suchard, S.; Suri, A.; Olah, T.; Tymiak, A.; Jemal, M. Pellet digestion: a simple and efficient sample preparation technique for LC–MS/MS quantification of large therapeutic proteins in plasma. Bioanalysis, 2012, 4(1), 17-28.
[http://dx.doi.org/10.4155/bio.11.286] [PMID: 22191591]
[28]
Niquet-Léridon, C.; Tessier, F.J. Quantification of Nε-carboxymethyl-lysine in selected chocolate-flavoured drink mixes using high-performance liquid chromatography–linear ion trap tandem mass spectrometry. Food Chem., 2011, 126(2), 655-663.
[http://dx.doi.org/10.1016/j.foodchem.2010.10.111]
[29]
Motomura, K.; Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Takeya, M.; Nohara, T.; Nagai, R.; Ikeda, T. Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J. Agric. Food Chem., 2009, 57(17), 7666-7672.
[http://dx.doi.org/10.1021/jf9007168] [PMID: 19681610]
[30]
Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V. Quantification of Nε-(2-Furoylmethyl)-l-lysine (furosine), Nε-(Carboxymethyl)-l-lysine (CML), Nε-(Carboxyethyl)-l-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chem., 2015, 188, 357-364.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.137] [PMID: 26041204]
[31]
Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Formation of free and protein-bound carboxymethyllysine and carboxyethyllysine in meats during commercial sterilization. Meat Sci., 2016, 116, 1-7.
[http://dx.doi.org/10.1016/j.meatsci.2016.01.009] [PMID: 26829237]
[32]
Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Formation of advanced glycation endproducts in ground beef under pasteurisation conditions. Food Chem., 2015, 172, 802-807.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.129] [PMID: 25442623]
[33]
Bayliss, M.A.J.; Venn, R.F.; Edgington, A.M.; Webster, R.; Walker, D.K. Determination of a potent urokinase-type plasminogen activator, UK-356,202, in plasma at pg/mL levels using column-switching HPLC and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 121-126.
[http://dx.doi.org/10.1016/j.jchromb.2008.11.038] [PMID: 19119083]
[34]
Ahmed, N.; Mirshekar-Syahkal, B.; Kennish, L.; Karachalias, N.; Babaei-Jadidi, R.; Thornalley, P.J. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol. Nutr. Food Res., 2005, 49(7), 691-699.
[http://dx.doi.org/10.1002/mnfr.200500008] [PMID: 15945118]
[35]
Schettgen, T.; Tings, A.; Brodowsky, C.; Müller-Lux, A.; Musiol, A.; Kraus, T. Simultaneous determination of the advanced glycation end product N ɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem., 2007, 387(8), 2783-2791.
[http://dx.doi.org/10.1007/s00216-007-1163-9] [PMID: 17318517]
[36]
Xie, X.; Kozak, M. Comparison of non-derivatization and derivatization tandem mass spectrometry methods for analysis of amino acids, acylcarnitines, and succinylacetone in dried blood spots. Thermo Fisher Sci, 2016, 2016, 1-8.
[37]
Salazar, C.; Armenta, J.M.; Shulaev, V. An UPLC-ESI-MS/MS assay using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for targeted amino acid analysis: Application to screening of arabidopsis thaliana mutants. Metabolites, 2012, 2(3), 398-428.
[http://dx.doi.org/10.3390/metabo2030398] [PMID: 24957640]
[38]
Bronsema, K.J.; Bischoff, R.; van de Merbel, N.C. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 1-14.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.021] [PMID: 22426285]
[39]
Ni, J.; Yuan, X.; Gu, J.; Yue, X.; Gu, X.; Nagaraj, R.; Crabb, J. Plasma Protein Pentosidine and Carboxymethyllysine; Biomarkers for Age-related Macular Degeneration, 2009, pp. 1921-1933.
[40]
Ahmed, M.U.; Thorpe, S.R.; Baynes, J.W. Identification of N ε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 1986, 261(11), 4889-4894.
[http://dx.doi.org/10.1016/S0021-9258(19)89188-3] [PMID: 3082871]
[41]
Séro, L.; Sanguinet, L.; Blanchard, P.; Dang, B.; Morel, S.; Richomme, P.; Séraphin, D.; Derbré, S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules, 2013, 18(11), 14320-14339.
[http://dx.doi.org/10.3390/molecules181114320] [PMID: 24256925]
[42]
He, J.; Zeng, M.; Zheng, Z.; He, Z.; Chen, J. Simultaneous determination of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in cereal foods by LC–MS/MS. Eur. Food Res. Technol., 2014, 238(3), 367-374.
[http://dx.doi.org/10.1007/s00217-013-2085-8]
[43]
Dell’mour, M.; Jaitz, L.; Oburger, E.; Puschenreiter, M.; Koellensperger, G.; Hann, S. Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research. J. Sep. Sci., 2010, 33(6-7), 911-922.
[http://dx.doi.org/10.1002/jssc.200900743] [PMID: 20229572]
[44]
Scheijen, J.L.J.M.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem., 2016, 190, 1145-1150.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.049] [PMID: 26213088]
[45]
Danaceau, J.P.; Chambers, E.E.; Fountain, K.J. Hydrophilic interaction chromatography (HILIC) for LC–MS/MS analysis of monoamine neurotransmitters. Bioanalysis, 2012, 4(7), 783-794.
[http://dx.doi.org/10.4155/bio.12.46] [PMID: 22512797]
[46]
Ruta, J.; Rudaz, S.; McCalley, D.V.; Veuthey, J.L.; Guillarme, D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A, 2010, 1217(52), 8230-8240.
[http://dx.doi.org/10.1016/j.chroma.2010.10.106] [PMID: 21106201]
[47]
Grumbach, E.; Fountain, K. Comprehensive Guide to HILIC: Hydrophilic Interaction Chromatography; Waters Corporation, 2010.
[48]
Kalasin, S.; Santore, M.M. Non-specific adhesion on biomaterial surfaces driven by small amounts of protein adsorption. Colloids Surf. B Biointerfaces, 2009, 73(2), 229-236.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.028] [PMID: 19556113]
[49]
Goebel-Stengel, M.; Stengel, A.; Taché, Y.; Reeve, J.R., Jr The importance of using the optimal plasticware and glassware in studies involving peptides. Anal. Biochem., 2011, 414(1), 38-46.
[http://dx.doi.org/10.1016/j.ab.2011.02.009] [PMID: 21315060]
[50]
Smith, J.A.; Hurrell, J.G.R.; Leach, S.J. Elimination of nonspecific adsorption of serum proteins by Sepharose-bound antigens. Anal. Biochem., 1978, 87(2), 299-305.
[http://dx.doi.org/10.1016/0003-2697(78)90679-6] [PMID: 356668]
[51]
Felgner, P.L.; Wilson, J.E. Hexokinase binding to polypropylene test tubes. Anal. Biochem., 1976, 74(2), 631-635.
[http://dx.doi.org/10.1016/0003-2697(76)90251-7] [PMID: 962118]
[52]
Kramer, K.J.; Dunn, P.E.; Peterson, R.C.; Seballos, H.L.; Sanburg, L.L.; Law, J.H. Purification and characterization of the carrier protein for juvenile hormone from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae). J. Biol. Chem., 1976, 251(16), 4979-4985.
[http://dx.doi.org/10.1016/S0021-9258(17)33210-6] [PMID: 182689]
[53]
Suelter, C.H.; DeLuca, M. How to prevent losses of protein by adsorption to glass and plastic. Anal. Biochem., 1983, 135(1), 112-119.
[http://dx.doi.org/10.1016/0003-2697(83)90738-8] [PMID: 6670734]
[54]
Science, Porvair Protein Crash Plates. Available from: https://www.microplates.com/product/microlute-ppp-protein-precipitation-plate/=
[55]
Stokvis, E.; Rosing, H.; Beijnen, J.H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun. Mass Spectrom., 2005, 19(3), 401-407.
[http://dx.doi.org/10.1002/rcm.1790] [PMID: 15645520]
[56]
Bioanalytical Method Validation,Guidance for Industry. 2018. Available from: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf=
[57]
Tan, A.; Hussain, S.; Musuku, A.; Massé, R. Internal standard response variations during incurred sample analysis by LC–MS/MS: Case by case trouble-shooting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 3201-3209.
[http://dx.doi.org/10.1016/j.jchromb.2009.08.019] [PMID: 19733134]
[58]
Rabbani, N.; Shaheen, F.; Anwar, A.; Masania, J.; Thornalley, P.J. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem. Soc. Trans., 2014, 42(2), 511-517.
[http://dx.doi.org/10.1042/BST20140019] [PMID: 24646270]
[59]
Lipecka, J.; Chhuon, C.; Bourderioux, M.; Bessard, M.A.; van Endert, P.; Edelman, A.; Guerrera, I.C. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics, 2016, 16(13), 1852-1857.
[http://dx.doi.org/10.1002/pmic.201600103] [PMID: 27219663]